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Abstract
This paper addresses the challenge of predicting erratic rainfall in Rajasthan 
state of India, particularly in southern regions. Reliable rainfall predictions are 
crucial for water resource management and agriculture planning. The research 
involved selecting 58 stations across seven districts of southern Rajasthan 
and identifying the best fit computational neural (ANN) and wavelet integrated 
computational neural (W-ANN) architectures based on performance metrics. 
Different combinations of input characters, hidden layer neurons, learning 
algorithms, and training cycles were tested to determine optimal models. 
Hybrid models, combining wavelet analysis with ANN, were explored to tackle 
non-stationary hydrologic signals effectively. Results showed that ANN Model 
C with ten input layer neurons performed best for 74% of stations, followed by 
Model B (21% of stations) and Model A (5% of stations). Models with increased 
input and hidden layer neurons performed better. Among the selected stations, 
81% of stations demonstrated improved performance using W-ANN models 
due to effective signal decomposition and information extraction. The hybrid 
W-ANN models outperformed simple ANN models for rainfall prediction. Both 
ANN and W-ANN models accurately forecasted weekly rainfall, as observed 
in the comparison of actual and forecasted values.
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Introduction
Rainfall holds significant importance for agricultural, 
domestic, industrial, and recreational purposes. The 
per capita availability of surface water in India was 

2309 cubic meters in 1991 and decreased to 1902 
cubic meters in 2001. Projections indicate a further 
decline to 1401 cubic meters by 2025 and 1191 
cubic meters by 2050.1 The mounting pressure on 
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water resources is a consequence of the escalating 
population.2 The formation of rainfall involves intricate 
interplays of dynamic, thermodynamic, and cloud 
microphysical processes across vast spatial and 
temporal scales.3 The stochastic nature of rainfall  
makes its prediction a formidable challenge. The 
complexity is amplified by the difficulties in accurate 
measurement at scales relevant to hydrology and 
climatology.4

Prolonged dry spells or heavy rains during critical 
crop growth stages can lead to substantial yield 
reductions, significantly impacting the national 
economy.5 Predicting rainfall patterns becomes pivotal 
in assessing the overall consequences of climate  
change.6 Globally, the surge in urbanization, 
industrialization, and population growth has 
heightened water demand.7 Studying extreme rainfall  
events holds paramount significance for water  
resources management.8

Rajasthan heavily relies on rainfall, averaging 
594.9 mm annually, with significant variability and  
sporadic dry spells, particularly in the west.9 Southwest 
monsoons contribute 75 to 95% of the yearly rain, 
primarily between June and September, crucial for 
local farmers.10 Any kind of deficiency in monsoon,  
mostly because of climate change causes higher 
frequencies of droughts in the parts of country such 
as Rajasthan as high as once every four years.11  
Limited water resources, erratic rainfall, and 
repetitive droughts may lead to reduced agricultural 
and economic conditions in some parts.12 Therefore, 
there is a need to adopt a proactive approach by  
strengthening the scientific advancement in predicting  
rainfall. Hydrological data, crucial for predicting rainfall, 
often exhibits a non-linear character.13 Traditional  
models like regression models have limitations because  
they operate under the assumption that data is 
both linear and stationary. Such models do not deal  
with nonlinearities in the data.14 An Artificial Neural 
Network (ANN) can be defined as a computer 
program which mimics the brain’s information 
processing using interconnected artificial neurons. 
These neurons form layers and are linked by 
coefficients, creating a neural structure. ANNs excel 
at capturing complex nonlinear relationships in data, 
especially when conventional mathematical models 
fall short.15 They've proven highly beneficial in tasks 
like rainfall forecasting and runoff modelling due 

to their nonlinear nature. ANNs have been in use 
as forecasting models for the past two decades in 
various scientific areas.16

Recently, the combination of wavelet analysis and 
artificial neural networks, known as ‘W-ANN’, has 
gained attention for its superior predictive accuracy 
compared to individual ANN analysis.17,18 Breaking 
down a non-stationary data series into various levels 
through wavelet decomposition bring forth a way to 
understand the underlying structure of the series 
and extract meaningful historical information.19 
By incorporating wavelet-transformed series into 
forecasting models, a hybrid wavelet-ANN approach 
enhances predictive ability across different resolution 
levels.20 The effectiveness of wavelet function types 
on ANN model performance remains underexplored. 
Initial instances of the wavelet-ANN model were 
applied to financial time series forecasting,21 
groundwater level prediction,22 and rainfall runoff 
modelling,23 yielding varying degrees of accuracy. 
Focussing these aspects, the present study was 
conducted for on evaluating various ANN and hybrid 
W-ANN models for rainfall prediction of southern 
Rajasthan, India.

Materials and Methods
Study Area
Southern Rajasthan is an important physiographic 
unit of the Rajasthan state, situated amidst the 
embrace of the Aravalli mountain ranges. It consists  
of a total of seven districts, out of which six districts viz.  
Banswara, Dungarpur, Pratapgarh, Udaipur, 
Chittorgarh, and Rajsamand formed the Udaipur 
division. Bhilwara district, although not situated 
within the Udaipur division, is considered a 
component of southern Rajasthan.24 This region 
experiences an average annual rainfall ranging from  
400 to 1100 mm. It is categorized into two agro-climatic  
zones: IV A, characterized as Sub-humid Southern, and 
IV B, classified as Humid Southern.25 The geographical  
coordinates of the region span from 23°01’10” to  
26°01’15” N latitude and 73°01’10” to 75°43’30”  
E longitude, covering an expanse of 50,510 km2.  
The seven districts in the study area viz. Banswara,  
Dungarpur, Pratapgarh, Udaipur, Chittorgarh,  
Rajsamand, and Bhilwara occupy an area  
of 5037, 3770, 4117, 11724, 10856, 4551 and 
10455 km2, respectively. The research area covers 
a distance of around 210 km from the southernmost 
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point to the northernmost point and extends 
approximately 240 km from the westernmost to 

the easternmost point. Figure 1 illustrates visual 
representation of the study area’s location.

Fig. 1: A chart depicting the geographical location of the study area

Artificial Neural Networks (ANNs)
An ANN technique is successful in hydrological 
modelling due to its flexibility, efficiency with 
nonlinear and noisy data, and superior accuracy 
compared to other models.15 ANNs are mathematical 
models inspired by brain activity, utilizing distributed 
storage and parallel processing.16

ANN Architecture
An ANN functions as a computational system 
comprised of artificial neurons, each serving as a 
processing element. This dynamic mathematical 
framework is adept at discerning intricate non-linear 
connections within input and output datasets.26 An 

ANN consists of interconnected units, with each unit 
possessing input and output capabilities, executing 
localized computations or functions. The output of a 
unit is dictated by its input/output characteristics. The 
architecture of an ANN is shaped by the inter-neuron 
weights, an activation function governing output 
generation in each neuron, and learning laws that 
specify the significance of weights concerning input 
to a neuron. Incoming signals undergo multiplication 
with corresponding weights as they progress toward  
the neurons. These signals aggregate at the 
neurons, and the resulting net input is subjected 
to the activation function to generate the output. 
A typical ANN architecture is depicted in Figure 2.

Fig. 2: Neural Network Structure with Single Hidden Layer
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Let Xi (where, i=1,2,3,…m) represent input characters 
and wi (where, i = 1,2,3,..n) denote their respective 
weights. The node’s net input can be expressed by,

  ...(1)

In this study, ANN models were formulated using 
ANN toolbox of MATLAB (R.2014a) software. The 
most widely used neural networks are Multilayer 
Perceptron (MLPs). As the hydrological state of the  
catchment area determines the catchment’s 

response to a rainfall event and due to intricate 
nature of the atmospheric events that generate 
precipitation, previous rainfall values are often used 
as input variables to ANN models.3 In the situations 
where comprehensive data on the required temporal 
and spatial scales is lacking, past rainfall values 
are commonly employed as inputs for ANNs. This 
approach is chosen because past rainfall serves as 
an indirect indicator of the hydrological state. The 
study focused on developing three distinct ANN 
model categories for predicting rainfall at specific 
stations within the designated area (Table 1).

Table 1: Input and output data used for training of ANN models

Category Neurons in the input stratum Neurons in the output stratum

Model A P(m-1), P(m-2), P(m-3) & P(m) (Precipitation of mth week)
 P(M-1), P(M-2), P(M-3) 
Model B P(m-1), P(m-2), P(m-3), P(m-4) & P(m) (Precipitation of  mth week)
 P(M-1), P(M-2), P(M-3), P(M-4) 
Model C P(m-1), P(m-2), P(m-3), P(m-4), P(m-5)   P(m) (Precipitation of  mth week)
 & P(M-1), P(M-2), P(M-3), P(M-4), P(M-5)

ANN Model A (Input Layer with Six Neurons)
This model incorporated six neurons in the input layer,  
considering the rainfall data from the corresponding 
week over the previous three years and the rainfall 
of the three preceding weeks from the same year.

ANN Model B (Input Layer with Eight Neurons)
Model B featured eight neurons in its input layer, 
encompassing the rainfall information for the same 
week over the previous four years and the rainfall 
of the four weeks preceding the current week in the 
same year.

ANN Model C (Input Layer with Ten Neurons)
Model C was designed with ten neurons in its input 
stratum, utilizing the rainfall data from the same week 
over the previous five years and the rainfall of the 
five preceding weeks from the current year.

In Table 1, Pm-n is the precipitation of the preceding 
‘n’ week of the same year; RM-n is the precipitation 
of the same week of the preceding previous ‘n’ year.

An essential consideration in ANNs involves 
determining the optimal configuration, including the  
quantity of latent stratums and the respective 

quantity of neurons within each stratum. There is no 
systematic method but a trial and error procedure 
is still being preferred choice of most users.27 The 
quantity of neurons in a latent layer is influenced 
by variables like input characters, output layer size, 
training cycles, noise in data, architecture, activation 
functions, and learning algorithms. While rules like 
having twice the input neurons can be helpful,28, 29  
a more accurate approach is multiplying 0.67 with 
the input-output sum30 or using (2n+1) based on 
input neurons.31 However, the most effective method 
is experimenting with various hidden unit counts 
during training.32 The quantity of neurons in the latent 
stratum ranged from 1 to 20. The decision on how 
many training cycles to use depends on the learning 
algorithm employed and the non-linearity between 
input-output. In the present study, a logsigmoid 
transfer function was used for generating outputs in 
ANNs. All neural network architectures were trained 
with the goal of a mean square error of 0.01 during 
both training and validation.

Learning Algorithms
A learning or training algorithm is a mathematical 
function that optimizes an error in order to modify 
the link weights. Two common types of algorithms 
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used in this study are Levenberg Marquardt or L-M 
framework and the Resilient Back Propagation or 
R-P framework. L-M algorithm also denoted by 
trainlm, is a network training function that adjusts 
and refines the weights and bias values as per the 
L-M optimization.33 It is the fastest backpropagation 
algorithm in the ANN toolbox and needs lesser 
learning cycles.34 The resilient backpropagation 
algorithm also denoted by trainrp, is a network 
training function that adjusts and refines the weights 
and biases as per the R-P algorithm.35 This algorithm 
requires only a modest increase in memory.36

In the present study, the rainfall data from the year 
1973 to 2022 i.e. 50 years of data was used for 
rainfall forecasting. Out of this, two-thirds part i.e. 33 
years of data (from 1973 to 2005) was used for model 
development and one-third part i.e. 17 years of data 
(from 2006 to 2022) was used for model validation.  
ANN models were trained by adjusting interconnection 
weights for input-output matching. Training stopped 
based on validation dataset error increase. This 
approach helped select the best-performing ANN  
model. Performance assessment employed 
Pearson’s Correlation (R), Root Mean Squared 
Deviation (denoted as RMSE), and Average Absolute 
Deviation (denoted as MAE) on the validation set.

Wavelet Based Artificial Neural Networks 
(W-ANNs)
While artificial neural networks (ANN) offer flexibility 
in modeling hydrological time series, they present 
limitations when dealing with highly non-stationary 
signals in hydrologic processes that exhibit seasonal 
variations. To address this challenge, the wavelet 
transform emerges as a valuable tool, capable of 
decomposing non-stationary data series into sub-
levels at various scales.37 This decomposition aids 
in enhancing the interpretation of the hydrological 
process. In recent years, the wavelet transform 
has demonstrated success in various engineering 
applications.38 Its application extends to the 
investigation of the time-frequency characteristics  
of long-term climatic data.39 The wavelet transform's 
ability to provide insightful decompositions of primary 
time series allows for an improved understanding 
of the underlying processes at various resolution 
levels.20 Consequently, integration of an ANN 
coupled wavelet function results in a hybrid structure  
known as the wavelet-ANN (denoted as W-ANN). This 

hybrid approach proves effective in simultaneously 
capturing frequency and time-domain information 
from the signal, offering a robust framework for 
predicting hydrological processes.40

Wavelet Transform
Wavelets can be characterized within realm of 
mathematics and used to provide a representation 
of time series data in terms of time scales along with 
their interrelationships.18 The process of wavelet 
analysis involves employing a mother wavelet 
function for the transformation. Wavelet transforms 
can be conducted in a continuous form, known as 
continuous wavelet transform (CWT), or a discrete 
form, referred to as discrete wavelet transform 
(DWT). Overall, wavelet transforms serve as a 
valuable tool for investigating time series, offering 
insights that contribute to forecasting and other 
empirical analyses.39

Continuous Wavelet Transformation
The wavelet transformation on time-scale basis of 
a continuous data signal, (t), is defined as follows,41

  ...(2)

Where, g* denotes the complex conjugate and (t) is 
defined as mother wavelet. The character a plays 
a role of dilation coefficient, while b refers to a time 
shift of the f(t), which permits the signal around b 
for the evaluation.

Discrete Wavelet Transformation
One straightforward discretization method for the 
CWT involves employing the trapezoidal rule. In 
this approach, N2 coefficients are generated from a 
dataset of length N. However, it results in redundant 
information encapsulated within these coefficients, 
which may or may not be advantageous.42 To address  
this redundancy, an alternative is to adopt logarithmic 
continuous spacing for discretization of the scale. 
This choice allows for a better resolution of the b 
number of locations, enabling N transform factors to 
effectively denote a signal of capacity N. A discrete 
wavelet can be represented by,
 

  …(3)

Where, m and n denote integers which control the 
expansion and transcription, respectively; a0 is a 
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particular expansion factor greater than 1; and b0 
denote the position character which must be greater 
than 0. The commonly used and simple choice for 
these characters are a0 = 2 and b0 = 1.43

 
Haar wavelet is the most suitable wavelet for 
modeling applications because it shows shift 
invariant property.44 It has better localization 
properties because it is a low pass filter concentrated 
over the narrowest support band.45 Therefore, in this 
study, by the Haar wavelet decomposition process, 

the original data series was hierarchically converted 
into n-level sub series at different frequency bands to 
reduce the noise. The sub series, i.e. decomposed 
details derived from the original time series by using 
discrete wavelet transforms were used as input for 
ANN to develop hybrid wavelet based ANN models. 
Thereafter, the procedure opted for training and 
validation of ANN models was also adopted for 
W-ANN models. A typical W-ANN architecture is 
shown in Figure 3.

Fig. 3: Wavelet based Neural Network Architecture with Single Hidden Layer

Where, Di (where, i=1,2,3,…m) are decomposed 
input characters and wi (where, i = 1,2,3,.....n) are 
their respective weights.

The research of21, 22 derived the following equation 
to find the appropriate decomposition scale of the 
main time series.

Y= int[log(Z)] … (4)

Where, Y and Z are decomposition scale and 
length of the series, respectively. The performance 
of formulated W-ANN frameworks was evaluated 
in terms of the same statistical indices as used for  
evaluating ANN models. The performance of 
W-ANN frameworks was juxtaposed to that of ANN 
architectures.

Results 
Rainfall Forecasting using Artificial Neural 
Network (ANN) Techniques
It was observed that, significant rainfall occurred from 
meteorological week 22 (MW-22) to meteorological 
week 42 (MW-42). The investigation into rainfall 

distribution in southern Rajasthan indicated that 
the weekly mean rainfall during the monsoon 
period (MW-22 to MW-42) exhibited a range from 
2.1 to 68.4 mm, accompanied by corresponding 
standard deviations ranging from 9.3 to 79.7 mm. 
The selection of suitable ANN architecture for weekly 
rainfall forecasting was done based on training and 
validation data sets. The statistical performance of 
different models was evaluated for the training and 
validation phase. For Model A, the training period 
was 33 years (1976 to 2008) and the validation 
period was 14 years (2009 to 2022). Similarly, for 
Model B and Model C, the training period was 32 
years (1977 to 2008) and 31 years (1978 to 2008), 
respectively.

Performance Evaluation of ANN Models for 
Varying Number of Inputs 
It was observed that, Model C was best fitted for 
74% of the selected stations followed by Model 
B (21% of stations) and Model A (5% of stations), 
respectively. Model A with six inputs was the 
lowest in terms of performance parameters. The 
performance measures R, MAE and RMSE for best 
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fit ANN models in all three categories for the Arthuna 
station (as an example) are shown in Table 2.  
The comparison between actual and forecasted 
rainfall for the Arthuna station using best fitted ANN 

architecture 10-16-1 (Model C) during the second 
stage of the validation phase (2016-2022) is shown 
in Figure 4.

Table 2: Performance Metrics for Best Fit ANN Architectures for Arthuna Station

ANN Model Performance Measures
(Best Fit) 
  Training   Validation   Overall

 R MAE RMSE R MAE RMSE R MAE RMSE

6-12-1 0.811 6.111 1.286 0.801 5.613 1.309 0.806 5.862 1.297
8-11-1 0.832 5.226 1.201 0.829 5.322 1.205 0.830 5.274 1.203
10-16-1 0.854 4.812 1.147 0.867 4.624 1.125 0.860 4.718 1.136

Fig. 4: Actual and Predicted Rainfall (Validation Phase) using Best Fit ANN 
Architecture 10-16-1 (Model C) for Arthuna Station 

Performance Evaluation of ANN Models for 
Varying Neurons in Latent Layer
Three ANN categories with varying numbers 
of input characters were examined for different 
numbers of neurons (1-20) in the hidden stratum.  
The appropriate numbers of neurons in the latent 
layer of ANN models were decided on trial and 
error basis. It was observed that, the change in 
the quantity of neurons in the latent stratum not 

considerably affected the performance of models. 
R values in the training and validation phase 
changed with the change in the quantity of neurons 
in the latent layers for all categories of models. The 
overall R value remained nearly constant for different 
combinations of neurons in latent layer. The similar 
type of pattern was found in case of RMSE and MAE 
also. The change in overall value of performance 
indices R, MAE and RMSE with varying number 
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of neurons in the latent stratum for Arthuna station 
is presented in Figure 5. It can be noted that, the 
highest value of overall R (0.861) in Model C was 
noted for 16 neurons in latent layer. Similarly, lowest 
values of MAE (3.121) and RMSE (1.132) in Model 

C were obtained for 16 neurons in latent layer. 
Therefore, ANN architecture 10-16-1 (Model C) was 
best fitted for Arthuna station. Similar process was 
undertaken for finding optimum number neurons 
in the latent layer for all stations in the study area. 

Fig. 5: Effect of Number of Neurons in the Latent Stratum 
on Performance Metrics for Arthuna Station
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Rainfall Prediction using Hybrid Wavelet based 
Artificial Neural Network (W-ANN) 
A black-box structure such as an ANN tends to 
underestimate peak values in time series data when  
confronted with sudden extreme inputs, such as heavy  
rainfall. In contrast, models like W-ANN, which 
incorporate information from current and past time 
steps with a focus on long-term periodicity memory, 
leverage historical data of extreme events to improve  
the accuracy of peak value forecasts. This approach 
allows for a more nuanced understanding and 
prediction of extreme occurrences in the time series.46 

In the present study, the main rainfall data series was  
decomposed at various levels using the wavelet 
toolbox in MATLAB R2014a software. The decom- 
posed details from discrete wavelet transform were 
then used as an input to ANN models as stated 
earlier and the performance of models was examined 
by the same statistical metrics as used in simple ANN 
models. Only the best fit models in simple ANN were 
used to formulate hybrid W-ANN models and their 
performance was compared.

Development of Hybrid W-ANN Models
Wavelet analysis was employed during the data 
pre-processing phase, enabling the extraction of low- 
frequency data over extended time intervals and high- 
frequency data over shorter time intervals. In the 
decomposition process using Haar wavelet, the original 
input data series was hierarchically converted into  
3-level sub series at different frequency bands for 
reducing the noise according to equation 4. The original  
and approximation time series at decomposition 
level 3 in the validation phase for best fit ANN model 
(10-16-1) for Arthuna station is shown in Figure 6. 
The first data series is the original signal followed by 
decompositions at level 3 using wavelet transform. 
The main signal underwent decomposition at level 3  
using the Haar wavelet, resulting in 4 sub-signals 
(level 3 coarse representation and level 1, 2, and 3  
fine intricacies). These four sub-signals serve as 
input layer neurons for the development of optimal 
ANN models for each station.

Fig. 6: Original and Approximation Rainfall Time Series (Validation Phase) for 
Best Fit ANN Model 10-16-1 at Decomposition Level 3 for Arthuna Station
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Performance Evaluation of W-ANN Models
The evaluation of W-ANN architectures was done 
using the same statistical measures as used for 
ANN models. The performance measures for best fit 
W-ANN model 10-16-1 (Model C) for Arthuna station 
are shown in Table 3. It can be seen that, R, MAE 
and RMSE values were 0.868, 3.267 and 1.125, 
respectively. The value of R in the training phase 

(0.861) was increased in the validation phase (0.875) 
due to shorter period of data used in the validation 
phase than in the training phase. The pictorial 
representation of actual and predicted rainfall using 
best fit W-ANN architecture during the second stage 
of the validation phase (on unseen data from 2016-
2022) for selected stations is shown in Figure 7.

Table 3: Performance Measures for Model C (W-ANN) Model for Arthuna Station

W-ANN   Performance Measures
Model 
(Best Fit)  Training   Validation   Overall

 R MAE RMSE R MAE RMSE R MAE RMSE

10-16-1 0.861 3.492 1.135 0.875 3.043 1.116 0.868 3.267 1.125

Fig. 7: Actual and Predicted Rainfall using W-ANN Architecture 10-16-1 (Model C) 
During Validation Phase for Arthuna Station

Comparison of ANN and W-ANN model 
performance
It was observed that, out of 58 stations, for 47 
stations (81% of stations) the performance of 
W-ANN models was improved in terms of statistical 

metrics due to useful decomposition and extraction 
of information at appropriate resolution level. For 7 
stations (12% of stations) the performance of W-ANN 
models was at par with that of ANN models, while 
for the remaining 4 stations (7% of stations) the 
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performance of wavelet based models was observed 
poor than ANN models. Comparison analysis of 
performance indices of ANN and wavelet coupled 

ANN models in different phases for Arthuna station 
is presented in Figure 8.

Fig. 8: Comparison of performance indices of ANN and W-ANN 
Architectures in different phases for Arthuna station
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Discussion
It was found that, an increasing number of input 
variables increased the correlation coefficient (R) 
values subsequently in the training and validation 
phase. The highest values of R were observed 
in Model C with ten inputs. The values of R were 
higher in the validation phase as compared to the 
training period, which indicated that ANN performed 
better in the validation phase of Model C. In the case 
of Model A and Model B, the values of R during 
the training phase were highest followed by the 
validation phase respectively for most of the stations.  
The use of a simulated network (only input values) in  
the validation phase may cause a lower value of R. 
Therefore, a higher number of inputs substantially 
enhanced the model’s performance across the majority 
of stations.47,48,49 reported improvements in ANN 
model performance with increased number of inputs. 

The increase in the quantity of neurons in the latent 
stratum up to 10 did not have a significant impact 
on the model’s performance. However, between 10 
to 20 neurons their performances improved in the 
form of R, MAE and RMSE for most of the selected 
stations.14,50,51 reported improvement in ANN model 
performance between 10 to 20 neurons in the 
latent stratum. Thus, all three categories of models 
performed better with more number of neurons in 
the latent stratum.

Hybrid W-ANN models found superior than simple 
ANN models for rainfall forecasting of southern 
Rajasthan.18,41,39,20 also reported that wavelet 
based hybrid ANN models provide better accuracy 
as compared to ANN models due to the useful 
decomposition of original time series for extraction 
of information with reduced noise. The comparative 
performance of ANN and wavelet coupled ANN 
models in all phases for the Arthuna station is 
graphically depicted in Figure 3.5. Overall, W-ANN 
model found superior in all phases as compared 
to the simple ANN model due to the useful 
decomposition of inputs to model.

Conclusion
In this research, various ANN and wavelet based 
ANN architectures were employed for rainfall 
forecasting of southern Rajasthan. Model category 
C with ten neurons in the input layer was best fitted 
for 74% of the selected stations followed by Model 
B (21% of stations) and Model A (5% of stations), 

respectively. Model A with six inputs was the lowest 
in terms of performance parameters. Therefore, the 
increased number of inputs significantly improved 
the performance of models in most of the stations. 
The models showed consistent performance 
across an increase in the number of neurons in 
the latent stratum up to 10. However, a remarkable 
enhancement in the performance was observed as 
the number of neurons increased from 10 to 20. All 
three categories of models performed better with 
more neurons in the latent stratum. Hence, the most 
effective category of the ANN model for predicting 
weekly rainfall in southern Rajasthan involved using 
the rainfall data from the same week over the past 
five years, along with the rainfall data from the 
preceding five weeks in those respective years as 
input variables. Out of 58 stations, for 47 stations 
(81% of stations) the performance of W-ANN models 
was improved in terms of statistical indices due to 
useful decomposition and extraction of information at 
the appropriate resolution level. For 7 stations (12% 
of stations) the performance of wavelet coupled ANN 
models was at par with that of ANN models, while 
for the remaining 4 stations (7% of stations) the 
performance of wavelet coupled ANN models was 
observed poor than ANN architectures. Therefore, 
hybrid W-ANN models found superior than simple 
ANN models for rainfall forecasting of southern 
Rajasthan. The comparison of actual and forecasted 
values of rainfall revealed that both ANN and W-ANN 
models forecast weekly rainfall satisfactorily. The 
hybrid W-ANN model provides greater accuracy 
than the ANN model for rainfall forecasting based 
on higher values of the R, and lower values of the 
MAE, and RMSE.
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