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Abstract
Landslides are the down slope mass movement of soil, rocks, and debris 
due to a natural or human activities resulting in widespread hazard events 
in India. The most affected areas comprise 15 percent of its landmass which 
includes Tripura and eleven Himalayan states and parts of the Western 
and Eastern Ghats in India. In Tripura, landslides cause road blockage and 
destruction of settlements, bringing economic and life losses in every year. 
Thus, this research is focused on identifying landslide susceptible zones 
and the significant causative factors behind landslides. Assessment of 
Landslide Susceptibility (LS) identifies fifteen major causative factors under 
five broad groups; topographic, geotechnical, hydrological, environmental, 
and anthropogenic. With application of Analytical Hierarchical Process 
(AHP), Frequency Ratio (FR), and Random Forest (RF)-based models were 
performed to extract landslide susceptible zonation map for Tripura. This 
study reveals that the successive hill ranges formed by young sedimentary 
lithologic formations associated with deforestation, heavy rainfall during 
monsoon, and anthropogenic activities (road constructions and jhumming) 
are the responsible geo-conditions for triggering landslides. In this study, 
while the AHP and FR model show only 1.95% and 11.46% confined along 
the hilltop of Jampui, Sakhan, and Longtarai, the RF model designated 
Tripura’s 30% land area as high and very high landslide susceptible zones 
(LSZ), predominantly over hills, foothills, and low laying undulating land 
(tillas). For the accuracy assessment, the ROC curve is used, which shows 
that RF model appears to be the maximum accurate (0.810) one, followed 
by FR (0.806) and AHP (0.744).
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Introduction 
Landslide can be classified as one of mass 
movement and can be of multiple factors involved 
in the movement, e.g. rock fall, debris fall and flow, 
top loose soil, mud etc., and can have a direct or 
indirect impact on lives and livelihood.1 2 3 As per the 
UNDRR Annual Report-2019, the most influential 
factors of landslides are rainfall (61.3 %), human 
impact (3.8 %), earthquake (0.9 %), and other 
local factors (33.7 %).4 The Centre for Research 
on Epidemiology of Disaster (CRED) stated that 
about 4.4% of disaster-related life and collateral 
losses occur due to landslides.4 The Global Fatal 
Landslide Database (GFLD) revealed that from 2004 
to 2016, India ranked one of the highest in terms of 
reported fatal landslides due to the presence of the 
Himalayas fold mountain system. India faced 923 
landslides, and nearly 11230 lives were lost during 
2004-2016.6 According to the Global Landslide 
Database - Des Inventar (2021), India is the 
second and fourth ranked regarding the number of 
landslide occurrences (2283) and fatalities (2283)7 
respectively. In India, the landslides were reported 
maximum in the Himalayan states of Uttarakhand, 
Jammu and Kashmir, Mizoram, Tripura, Nagaland, 
and Arunachal Pradesh, and also Kerala state since 
it is located in part of western Ghats.8 Landslide Atlas 
of India prepared by NRSC, Hyderabad, has shown 
Tripura state obtained 8th rank in the occurrence of 
landslides, and 56 landslides were recorded within 
the year 2021.9 The Geological Survey of India (GSI) 
reports that Tripura’s districts are directly or partially 
affected by landslides, predominantly in hills during 
extreme rainfall in the summer monsoon season 
and during earthquake events.10 11 Tripura Disaster 
Management Authority (TDMA) reports (2002-22) 
stated that it has witnessed numerous landslides 
resulting in 9 life losses, widespread damage to 
infrastructure (about 106 houses damaged and 
frequent road collapses throughout the state), 
substantial economic loss and disturbed livelihood 
of people.12, 13 Earlier researcher had developed 
mitigation and prevention plans, and also making 
landslide vulnerability maps at global, national and 
regional levels. Various landslide susceptibility 
models and techniques, applied from field-based 
empirical study to advanced machine learning-based 
GIS techniques, were introduced to mapping such 
destructive events. These mainly evolved from 
simple overlay to knowledge-based Multi-criteria 
Decision Making (MCDM), statistical, weighted 

overlay, probability, regression decision tree, and 
computer learning approach. Among the following 
approaches, the predominant techniques used 
in Landslide Susceptibility Modelling (LSM) are 
weighted overlay, Analytical Hierarchical Process, 
Frequency Ratio, Logic Regression and Random 
Forest, etc. Though this kind of study is essential in 
the state or region, there is an inadequacy in such 
studies in the northeast region of India, especially 
for Tripura. Thus, for assessing the landslide 
susceptibility zones of Tripura, the AHP, FR, and RF 
models were used to get an overview of landslide-
prone areas and a comparative evaluation of such 
LSM techniques. 

Study Area
Tripura is one of the twelve Himalayan states in India, 
located in the north-eastern part of the country.14  
It comprised total area of 10491km2 approximately 
and extending  between 22° 56′ to 24° 32′ North 
Latitude and 91° 09′ to 92° 20′ East Longitude 
(Fig.1.).14 The state experiences warm and humid 
tropical climate. The mean annual rainfall varies from 
1922 mm to 2855 mm, and the mean temperature 
ranges from 10°C (January) to 33°C (May). Nearly 
60% of rainfall is received during monsoon (May to 
mid-October) and 30% during pre-monsoon season.15 

16 There are ten significant rivers that originate from 
the hills of Tripura and are the rightward tributaries 
of the Meghna River. The study area comprises 
western Sylhet riverine plains, undulating plains, 
and hilly regions. The elevation varies from 12 to 
940 meters above the mean sea level. Tripura have 
five parallel anticlines and synclines in the hilly 
part of the state; it has been remarked as ‘Ridge 
Valley Province’.17 The hill slopes are formed of 
young sedimentary rocks, weathered debris, and 
soil mixed with sand and laterites, predominantly 
modified by fluvial actions .18 The Geological Survey 
of India (GSI) states that the state is predominated 
by Miocene to Holocene period lithology as the 
development of Neo-tectonism started over the 
Indo-Myanmar mobile zone. The ranges of folded 
hills are formed over the young Tripura-Mizoram 
fold belt.19 Physiographically, Tripura is divided 
into western parts and intermediate valley plains, 
undulating areas (tilla-lungas), dissected foothills, 
and hill ranges. National Centre for Seismology 
stated that it falls under Seismic Zone V, which 
makes it more vulnerable to slope instability and 
landslides. The most recent tremor of the earthquake 
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(5.9 MW) has been recorded near Kanchanbari in 
Dhalai District.10 The state is administratively divided 
into Tripura Tribal Area Autonomous District Council 
(TTAADC) and non-ADC. These divisions were 
formed physiographically: ADC covers hilly and 
forested areas, characterized by remoteness and 
hilly inaccessible conditions, and non-ADC covers 
the riverine plains. High population concentration 
has been observed in the state capital ‘Agartala’ and 
urban towns such as Udaipur, Dharmanagar, and 
other sub-divisional towns and nagar-panchayet, 
which are majorly connected through cross linking 
hilly routes.

The physical, climatological, and socio-economic 
conditions make the state more vulnerable to 
landslides, collateral damage, and fatality. Therefore, 
this research is focused on identifying the LSZ 
(Landslide Susceptible Zone) in Tripura based 
on responsible factors, assessing their degree of 
intensity on landslide occurrence, and finally finding 
the best accurate models in landslide susceptibility 
modelling. The analysis will benefit the planning 
and development of the region more by mitigating 
landslides through modelling. This study will also 
help advance early warning systems to avoid 
devastating situations.

Fig, 1: Location map

Data and Methodology
For the assessment of landslide susceptibility 
of Tripura, the fifteen selected causative factors 
are the foremost essential, which are identified 
and categorized as broadly (i) topographic, (ii) 
geotechnical, (iii) hydrological, (iv) environmental, 
and (v) anthropogenic factors.20 Under the 
topographic causative factors are elevation, slope, 

relative relief, and Topographic Position Index. 
These factors influence landslide occurrence as 
high elevations, steep slopes, and unstable soil 
can increase the intensity of landslides.21 The 
underlying lithology, fault and lineament density, 
and Soil Bulk Density (SBD) were considered within 
the geotechnical factors. As the lithology represents 
subsurface structures and the lineament distribution 
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indicates surficial and sub-surficial weakness, these 
lead to landslide susceptibility. The lithological 
structure represents the forming rocks, whereas 
the distribution of lineament and low SBD indicate 
surficial and sub-surficial weakness, leading to 
landslides.22 23 24. Regarding hydrological causative 
factors, the annual rainfall distribution, proximity 
to streams, and stream power significantly affect 
landslides. During the monsoon season, rainfall 
causes a decrease in the cohesiveness of slope 
materials by increasing moisture content. On the 
other hand, surface runoff also increased due to 
heavy rain, resulting in erosion and toe cutting 
of slopes leading to landslide susceptibility.25 To 
address the environmental causative factors, the 
vegetation condition and water availability were 
extracted using the band rationing based on NDVI 
and NDWI over the hillsides, which can also influence 
the risk of landslides .26 The present status of LULC 
changes and proximity to the roads (construction of 
roads in hilly and steep slopes) are considered under 
the anthropogenic causative factor, which also acts 
as one of the critical stabling agents, as instinctive 
changes in land use phenomena over slope.27 28 

29. These factors were assembled by summarizing 

the globally available landslide databases,  GFLD 
(Global Fatal Landslide Database), GLC (Global 
Landslide Catalogue), EM-DAT (Emergency Event 
Database), and DesInventar.30 9 31 32

 
The above selected causative factors are further 
converted into thematic raster layers accordingly 
in QGIS and Google Earth Engine GIS platforms. 
The topographic and number of causative factors 
such as elevation, slope, relative relief, TPI, SPI and 
drainage are extracted from the pre-processed ESA 
COPDEM 30 Digital Elevation Model (COP30) with 
a resolution of 30 meters.33 Further, the selected 
environmental and anthropogenic causative 
factors such as Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Water Index 
(NDWI), Bare Soil Index (BSI) and Land use land 
cover for 2023 were prepared from the processed 
Landsat 9 image collection in the GEE platform. The 
other factors, such as geology, road networks, and 
landslide points, were collected in vector format, and 
were converted into thematic raster layers with the 
same EPSG projection: 32646 and resampled into 
30-meter resolution. The detailed data sources and 
their uses are given in Table 1.  

Table 1: Acquired data

Sl no	 Data	 Data source	 Resolution / Scale	 Used for

1	 COP30 DEM	 Open Topography web Portal33	 30 meter	 Topographic analysis
2	 Landsat-9 OLI	 https://
		  earthexplorer.usgs.gov/ 34	 15,30 meter	 Environmental 
				    parameter
3	 Geological data	 https://bhukosh.gsi.gov.in/ Bhukosh/	 1:50,000	 lithology and lineament
		  MapViewer.aspx35

4	 Soil grid data	 https://www.isric.org/	 250 meter	 Soil bulk density
		  explore/soilgrids36	
5	 Land Use Land	 https://code.earthengine.	 30 meter	 Anthropogenic factor 
	 Cover map	 google.com/37(prepared by Author)	
6	 Transportation	 openstreetmap.org 38	 1:100,000	 Anthropogenic factor
	 map	
7	 Rainfall Data	 https://www.imdpune.gov.in/cmpg/	 0.25 degree	 Rainfall
		  Griddata/ Rainfall_25_NetCDF. Html39	
8	 Landslide	 https://bhukosh.gsi.gov.in/Bhukosh/	 1:50,000	 Training and testing of
	 points	 .aspx& Field surveydata.40		  models

The methodologies applied for mapping of LSZs 
are from various perspectives, which are based on 
multicriteria decision-making techniques, statistical 

techniques, and semi-automated techniques.41 
Among all of these, some of the most used methods 
are AHP and FR.42 These methods use prior 
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expertise and past spatial data to produce the output 
results, such as AHP weightage and FR value.43 

The AHP (MCDM) model organises the interrelating 
landslide causative factors. The susceptibility of 
landslides in Tripura is determined from assigned 
weights based on a derived AHP comparison matrix, 
drawing from previous empirical information in the 

fields.46, 47, 48 The FR values are calculated from the 
bivariate statistics of the area coverage of landslide 
and not-affected areas among the selected causative 
factors. By following the rationing formula- 

Fig.2: Flow Chart for mapping for landslide susceptibility zones of Tripura

the probability of the occurrence of landslides, 
to-landslides non-occurrence in a given area was 
assessed.52 Random Forest is an ensemble machine 
learning model proposed by Leo Breiman (2001) to 
classify the regression tasks; the LSM modelling 
operates by constructing a multitude of decision 
trees at training time.54 The random forest takes the 
majority of the votes for the classification decision. 
It comprises several decision trees as input from 
causative factors and trains the data using an 
automated clustering algorithm. In this case, the 
rasterized factors are clustered into a predefined 
number of classes.44, 45 Therefore, the assessment of 
landslide susceptibility in Tripura used more effective 
models: (i) AHP, (ii) FR, and (iii) RF based on the 
expertise of field information and past landslide 
points classified for susceptible zones (Fig.2.)

This model was performed using Google Earth 
Engine (GEE). The first step of the RF model is 
preparing the collection of fifteen selected causative 
factors and importing GEE to map landslide 
susceptibility zones. Further, all the prepared raster 
maps are merged as an image collection. These 
classified points are used as training and testing 
points to prepare training and testing data sets. 
The prepared 70% dataset is used to train the RF 
model, and the number of trees was estimated by 
the hyper-tuning method. In this case, it is.97 Finally, 
by combining 97 predictions, the final landslide 
susceptibility map has been prepared. The final map 
was validated using the randomly selected remaining 
30% of the sampled dataset. The landslide and 
non-landslide points are classified into five severity 
classes.
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Results and Discussion 
Topographic Factors
The elevat ion, s lope, relat ive rel ief ,  and 
geomorphic units or landforms (derived from 
TPI) are considered topographic causative 
factors of landslides. The elevation of Tripura is 
categorized into the following physiography: Plains 
(below 40 meters), Lunga-tilla (40-80 meters), 

foothills (80-120 meters), Hills and Hill ridges  
(120 meters and above). Among the physiographic 
divisions, most of the landslides occurred in high-
elevation areas occupying 22.83% of the total area, 
especially in hills, including the highly undulating 
southern part of Tripura and the heights ranging 
between 120 meters and 939 meters (Fig. 3a.). 

Fig.3: Topographic factors: 3a. elevation, 3b. slope, 3c. 
relative relief, 3d. TPI based landform classes
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The most influencing categories of the slope are 
strongly slopping (10°-15°), moderately steep slope 
(15°-20°), and steep slope (above 20°), covering 
29.12% (Fig.3b.). The moderate to very high relative 
relief between 60 and 305 meters covers about 
8.42% of the area. It is also affected by landslides 
(Fig.3c.). The TPI values range from negative 
224.412 to positive 302.167, classified into Deep 
Valley, Upslope drainage, and Lungas, Plains, Tillas, 
Hills and Hill ridges. From the field visits, the Deep 
Valleys (16%), Upslope drainage or foothills (22%), 
Hills and Hill ridges (50%) are observed as the most 
landslide occurrence landforms, among the hills only 
covering an area of 5.09% (Fig.3d.).

Geotechnical Factors
Geologically, Tripura consists of five major lithologic 
formations such as Bhuban (6.53%), Bokabil 
(30.23%), Tipam (44.47%), Dhupitila (14.46%) and 
recent depositions as Holocene (4.30%). These 
formations were developed under maritime, shallow 
fluvial-maritime conditions. The rocks found highest 
are shale, laminated shale sandstone, buff-coloured 
sandstone, siltstone, and mud/claystone (Fig.4e.). 
The distribution of lineament density shows that in 
North Tripura, Dhalai, Unakoti and part of Gomati 
are the high lineament density districts of Tripura 
(with higher density, above1.5km/km2) among the 
five central hills ranges (Fig.4f.). 

Fig.4: Geotechnical factors: 4e. lithology, 4f. density of fault and lineament,4g. soil bulk density

The SBD is another crucial controlling factor. The 
hilltops have the lowest SBD, and the riverine 
plains, valley fills, and lungas have the highest SBD 
(148 cg/ cm3) and immune from slope instability. 
The lesser SBD indicates the lower cohesion of 
soil and makes the slope unstable. Among hills of 
Atharamura, Longtarai, Sakhan, Jampui and the 
central catchment reserve forest area are observed 
to have lower than 129 cg/cm3 SBD at 60 cm of 
depth, thus being vulnerable to landslide (Fig. 4g.).

Hydrological Factors
The Steam Power Index denotes the probable 
topography-driven erosional power of the surface 
flow or Streams. In the case of Tripura, SPI varied 
between 0.15 and 25.11, and its spatial distribution 

indicates that the hilly areas, along with a high 
drainage distribution, have a high potential for 
erosion (Fig.5h.). Another hydrological factor is 
proximity to a stream. It is observed from the field 
survey and past landslide records that the 100-meter 
neighbourhood is the most susceptible. In this 
case, about ten landslides were detected along 
the proximity of a hundred meters of stream in the 
past (Fig.5i.). According to IMD, the total annual 
precipitation recorded within the state ranges from 
1450 to 2500 millimetre (Fig.5j.). It increasingly trend 
towards the south, due to neighbourhood of Bay of 
Bengal. However, most of Tripura’s high hills have 
experienced 1700 to 1900 mm of rainfall annually 
for the last three decades (1990-2020).
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Environmental Factors
The NDVI is considered to identify the vegetativeness 
of the state. The higher NDVI (0.53 to 0.20) indicates 
moderate to dense vegetation covering an area of 
80% (Fig. 6k.). On the other hand, the bare soil areas 
were affected by erosion of surface materials, toe 
cutting, etc. In the case of Tripura, it is identified that 
the bareness is highest at the top of the hills (Fig.6l.). 

The high value of NDWI indicates the presence of 
water and moisture in the surface and soil. In case 
of Tripura, NDWI seems to be highest over the 
Jampui, Sakhan, and Longtarai ranges (Fig. 6m.). 
The phenomena, along with less SBD, have created 
the landslide situation by increasing the chance of 
oversaturation of soil and debris layer on the slope.

Fig.5: Hydrological factors: 5h. stream power index, 5i. 
proximity to streams, 5j. mean annual rainfall 

Fig.6: Environmental factors: 6k. Normalized Different Vegetation Index, 
6l. Bare Soil Index, 6m. Normalized Difference Water Index

Anthropogenic Factor
In Tripura, the hundred-meter proximity of the road is 
the most vulnerable, as about 22% of the landslides 

between 2000 and 2022 occurred in this section 
(Fig.7n). In the case of land used, scrubland, bare 
land, roads, and settlements were given maximum 
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weightage, and water bodies, agricultural fields, 
and natural vegetation were assigned less. In 
comparison, the plantation and jhum fields were 
given moderate. The LULC categories are natural 
vegetation, jhum, plantation, cropped land, water 

bodies, settlement, scrubland, bare lands, and jhum 
covers an area in percentages of 55.53, 17.62, 
13.08, 5.71, 2.24, 2.05, 1.95, and 1.80 respectively 
(Fig.7o.).

Fig.7: Anthropogenic factor: 7n. proximity to roads,7o. major land classification

Table  2: Weightages assigned to causative factors using AHP, FR, and RF models

Sl. 	 Causative	 Class	 Pixels 	 Landslide 	 FR	 FR 	 Subcla-	 AHP	 RF degree
No	 factors		  (%)	 pixels (%)		  weight	 ss AHP	 weight	 of impor-
						      age		  age	 tance (%)

 1	  Elevation	 below 40	 24.36	 1.649	 0.068	  4.949	 0.052	 0.172	 10.60
	 (in meters)	 40-80	 36.18	 12.158	 0.336	  	 0.091		
 		  80-120	 33.45	 37.276	 1.114		  0.159		
 		  120-300	 4.966	 26.908	 5.419		  0.237		
 		  above 300	 1.028	 22.007	 21.41	  	 0.461		
 2	 Slope	 below 5	 40.67	 10.760	 0.265	 4.089	 0.020	 0.123	 12.90
 	 (in degree)	 5-10	 30.52	 16.564	 0.543	  	 0.190		
		  10-15	 17.76	 21.566	 1.214		  0.156		
 		  15-20	 8.523	 27.512	 3.228	  	 0.256		
 		  above 20	 2.525	 23.596	 9.342		  0.378		
3 	 Relative Relief	below 15	 46.38	 13.949	 0.301	 4.053	 0540	 0.803	 7.80
 	 (in meters)	 15-30	 31.83	 14.184	 0.446		  0.091		
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		  30-60	 14.84	 22.478	 1.514	  	 0.139		
 		  60-120	 5.263	 27.804	 5.283	  	 0.251		
 		  above 120	 1.670	 21.583	  12.92	  	 0.444		
 4	 TPI (landform	 Deep valley	 6.844	 16.245	  2.373	  4.772	 0.193	 0.069	 7.11
 	 class)	 Upslope	 25.61	 22.800	  0.890	  	 0.108		
		  drainage	
		  and lungas
		  Plains	 40.94	 4.266	  0.104	  	 0.076		
 		  Tillas	 21.33	 7.402	  0.347	  	 0.160		
 		  Hills	 5.262	 25.402	  4.828	  	 0.216		
 		  Hill ridges	 1.065	 24.522	  23.02	  	 0.247		
 5	  Lithology	 Present	 4.302	 2.657	  0.618	  3.113	 0.061	 0.058	 5.70
 	  	 days
		  deposition 
		  Dhupitila	 14.46	 11.456	  0.792	  	 0.134		
		  Tipam	 44.47	 23.780	  0.535	  	 0.115		
 	  	 Bokabil	 30.23	 36.890	  1.220	  	 0.443		
 	  	 Bhuban	 6.526	 25.215	  3.864	  	 0.247		
6	 Lineament	 below 0.8	 2.936	 8.341	  2.841	   2.335	 0.055	 0.049	 5.80
 	 density	 0.8-1.2	 11.70	 16.871	  1.441	  	 0.153		
 	 (per sq.km)	 1.2-1.6	 58.72	 21.583	  0.368	  	 0.101		
 		  1.6-2.0	 18.45	 22.149	  1.200	  	 0.275		
 		  above 2.0	 8.185	 31.055	  3.794	  	 0.416		
 7	  SBD	 below 129	 0.941	 1.012	  1.076	  2.880	 0.369	 0.057	 7.10
 	  	 129-133	 13.21	 42.521	  3.217	  	 0.290		
		  133-137	 22.05	 14.566	  0.660	  	 0.176		
 	  	 137-141	 29.79	 26.290	  0.882	  	 0.101		
 	  	 above 141	 33.98	 15.661	 0.459 	  	 0.064		
8	 Annual rainfall	 below 1600	 2.936	 5.261	  1.792	   1.849	 0.069	 0.063	 5.07
 	 (in mm)	 1600-1700	 11.79	 1.754	  0.150	  	 0.103		
		  1700-1800	 58.71	 49.253	  0.839	  	 0.135		
		  1800-1900	 18.45	 33.209	  1.800	  	 0.208		
		  above 1900	 8.185	 10.522	  1.286	  	 0.485		
9	 Proximity to	 100 m. 	  8.37	  13.436	  1.604	  1.030	 0.667	 0.052	 4.50
 	 streams 	 100-200 m. 	  7.90	  11.071	  1.401	  	 0.160		
 	 (in meters)	 200-300 m. 	  8.81	  9.987	  1.133	  	 0.071		
 		  300-400 m. 	  7.03	  4.961	  0.705	  	 0.041		
 		  Above 400 m.	  67.8	  60.545	  0.892	  	 0.051		
10	 SPI	 below 2	  6.44	 6.882 	 1.067	 1.692	 0.063	 0.057	 7.30
 	  	 2-4	  39.9	  30.284	  0.759	  	 0.126		
 	  	 4-6	  45.0	  41.629	  0.924	  	 0.256		
 	  	 6-8	  7.92	  19.345	  2.442	  	 0.502		
 	  	 above 8	  0.69	  1.860	  2.821	  	 0.046		
11	 NDVI	 below 0	 2.33	 0.235	  0.101	   3.987	 0.065	 0.056	 5.30
 	  	 0.0-0.20	 18.31	 5.655	  0.309	  	 0.252		
 	  	 0.20-0.25	 30.05	 19.745	  0.657	  	 0.103		
 	  	 0.25-0.30	 33.23	 25.117	  0.756	  	 0.183		
 	  	 above 0.30	 16.05	 49.246	  3.066	  	 0.379		
12	  BSI	 below 0.2	 31.89	 0.188	  0.006	   4.469	 0.043	 0.055	 5.70
 	  	 0.20-0.30	 28.00	 3.393	  0.121	  	 0.237		
		  0.30-0.40	 20.37	 12.205	  0.599	  	 0.322		
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 	  	 0.40-0.50	 11.06	 26.531	  2.399	  	 0.277		
 	  	 above 0.50	 8.668	 57.681	  6.654	  	 0.121		
13	 NDWI	 below 0.00	 10.31	 15.504	  1.503	  1.000	 0.065	 0.036	 5.03
 	  	 0.00-0.05	 28.80	 36.239	  1.258	  	 0.057		
 	  	 0.05-0.10	 36.90	 28.134	  0.762	  	 0.077		
 	  	 0.10-0.15	 20.62	 17.672	  0.858	  	 0.353		
 	  	 above 0.15	 3.374	 2.450	  0.726	  	 0.513		
14	 Proximity to	 below 50	 1.132	 23.327	  20.10	 3.903 	 0.291	 0.043	 7.20
 	 roads (in	 50-100	 2.065	 6.276	  3.039	  	 0.059		
 	 meters)S	 100-150	 1.043	 6.889	  6.612	  	 0.081		
 		  150-200	 1.663	 3.581	  2.389	  	 0.032		
 		  more than 200	 94.10	 6.085	  0.639	  	 0.032		
15	 LULC	 Water bodies	 2.24 	  1.094	  0.488	 3.589	 0.098	 0.027	 2.90
 	  	 Natural	 55.53	  54.744	  0.956	  	 0.096		
 	  	 Vegetation	  2.04	  0.772	  0.377	  	 0.042		
 	  	 Settlements 
		  Bare ground	  1.79	  11.869	  6.605	  	 0.242		
 	  	 Agricultural	  5.71	  5.532	  0.969	  	 0.025		
 	  	 land 
		  Plantations	  13.0	  2.573	  0.197	  	 0.142		
 	  	 current fallow	  1.96	  1.737	  0.886	  	 0.034		
 	  	 Jhum field	  17.6	 21.679 	  1.231	  	 0.321		

According to frequency ratio-based estimation of 
weightage among all the causative factors, elevation 
has computed maximum (4.949) followed by TPI 
landform class (4.772), BSI slope (4.089), relative 
relief (4.053), NDVI, proximity to roads, LULC, 
lithology, SBD, lineament density, annual rainfall, 
SPI, proximity to streams, and NDWI. In this case, 
AHP weightage estimation shows elevation (0.172) 
as maximum, followed by the slope (0.123), RR 
(0.080) and TPI (0.069), Average rainfall, lithology, 
SBD, SPI, NDVI, BSI, LD, PS, PR, NDWI, and LULC. 
Whereas RF computation shows slope scored 
highest (12.90% degree of importance) followed by 
elevation (10.60%), RR (7.99%), SPI, PR, TPI, SBD, 
LD, Lithology, BSI, NDVI, AR, NDWI, PS, and LULC 
respectively (Table 2).

Discussion 
The elevation along with slopes and relative relief 
are the direct causative factors and, with higher 
differences in values, lead to landslides as kinetic 
energy is stored in slope material, and the higher 
the down-sloping forces, when it is detached from 
the side wall of the hill, its destruction forces will 
be higher.57 The varying surface information of 
physiographical setups and topographic units also 
carries out the variation in TPI. Extreme negative 

and positive TPI values indicate the position of 
successive ridges and valleys at higher altitudes, 
and the lesser values indicate the plains. In 
Tripura, the combination of high altitude, maximum 
slope, RR, and TPI leads to appropriate conditions 
for landslides. This topographic composition is 
predominantly observed in hilly parts of the states, 
covering the total area of 22.83 %. Tripura’s hills 
consist of various grades of shale, sandstone, 
mudstone, and sand rocks in thinly based lithologic 
formations of Bhuban, Bokabil, Tipam, and Dhupitila. 
These formations were developed under maritime, 
shallow fluvial-maritime conditions and did not get 
the proper hardening time. Therefore,  most of the 
exposed rocks such as shale, laminated shale 
sandstone, buff-coloured sandstone, siltstone, 
and mud/claystone are soft enough for the faster 
rate of weathering and mass wasting (Fig. 4e.).35  
As the laminated shale, sandstone and buff-coloured 
sandstone are not very resistant in nature and are 
found in landslide debris. Therefore the Tipam, 
Bokabil, and Bhuban formations are identified as 
the highest landslide-occurring geologic rock groups 
during field observation. Subsequently, in calculation 
of AHP, these rock groups are highly preferred. 
As the high presence of faults and lineaments 
weakens the area, lineament distribution positively 
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correlates with landslide probability, prone to severe 
landslides. In the past, the most reported landslides 
were due to surface instability and water shipping.31 

The Steam Power Index, proximity to streams, and 
rainfall distribution are considered to understand the 
hydrological influence of landslide susceptibility. The 
precipitation is drained according to topography in 
the form of sheet flow and streams, and the surface 
materials are eroded by surface flow. Thus, the 
probable topography-driven erosional power of the 
surface flow has been estimated by the Stream 
Power Index (SPI). It was observed in the field 
survey that the nearer the distance to a river, the 
higher the chance of toe cutting from the streams and 
the higher erosion, slope instability, and susceptibility 
of landslide.32 The presence of flowing water as 
erosional agents cut down the slope to make slope 
unstable and cause to landslides. The thirty years 
rainfall data collected from the IMD, shows that the 
hills and tillas  receive rain more than 1700 mm 
and it covers  an area of 85.34% in the study area. 
Hence, the rainy season is observed as the most 
vulnerable season in terms of the high occurrence of 
landslides. The bare soil was affected by the erosion 
of surface materials, toe-cutting, etc. In the case of 
Tripura, it is identified that the bareness is highest 
of 0.50 BSI (covering an area of 8.66%) combined 
with hilly steep slopes are mainly associated with a 
landslide. This adverse environmental phenomenon 
occurred due to the anthropogenic modification of 
landscapes such as slash and burn agricultural 
practices (jhuming) and deforestation. High NDWI 
phenomena and less SBD created the landslide 
situation by increasing the chance of oversaturation 
of soil and debris layer on the slope.9,31 It has become 
one of the most viable factors for landslides. On the 
other hand, in the current world scenario, humans 
are trying to occupy as much land as possible. 
Humans have tried to endeavour against opposing 
situations like remoteness, inaccessibility in hills, 
inaccessible land, etc., by imposing artificial land 
use and land cover over exis ting natural settings. In 
Tripura, types of activity such as clearing vegetation 
and forest cover for jhumming, earth and rock 
excavation, and road building have exacerbated the 
landslide susceptibility of the state. For investigation 
of the status of forest cover, road, and settlement 
vulnerability, the proximity to the road and LULC 
were taken into consideration. The proximity to 
roads is considered as highly susceptible as these 
areas have developed on toe-cutting areas of 

hill slopes and are characterized by continuous 
vibration from heavy vehicles, deforestation, and 
unmortared roadside drainage, causing instability 
of slope and leading to slope collapse and landslide 
29 28 (Fig.7n.).

Analysis of Landslide Susceptibility of Tripura 
through AHP, FR and RF Models 
Based on the above-discussed causative factors, the 
landslide susceptibility assessment of Tripura has 
been computed using the MCDM technique of AHP 
and a bivariate statistical method of Frequency Ratio 
and the machine learning method of the Random 
Forest. Tables 2 and 3 show the assigned weightage 
of each landslide causative factor estimated from the 
following  landslide susceptibility models. 

(i)	 FR is used to study Tripura's landslide 
susceptibility. The Geological Survey of India, 
Landslide Inventory, and Tripura State Disaster 
Management records showed 76 landslide-affected 
areas in Tripura state in the last two decades based 
on field investigations. Each factor was reclassified, 
and the area of each class and landslide area were 
estimated. The frequency ratio was calculated 
by combining these two. The FR value near one 
or more indicates the average effectiveness of 
factors on landslide occurrences; the higher the 
value, the more correlated the factors and landslide 
susceptibility. Among the factors, the slope was 
estimated to have the highest weightage, followed 
by elevation, relative relief, stream power, landforms 
(TPI), soil bulk density, proximity to roads, etc. The 
higher class of each factor contains more landslide 
pixels in FR calculation. The landslide susceptible 
areas are delineated into five classes: very low 
susceptible area, low susceptible area, moderate 
susceptible area, high susceptible area, and very 
high susceptible area, and their coverage of 1.71%, 
47.94%, 38.87%, 11.10%, and 0.36% respectively 
(Fig. 9.). LSZ areas indicates that the state has 
significantly less amount of landslide susceptible 
zones, situated on the hills of Jampui, Longtarai, and 
Sakhan and in the vicinity of where the Gomati River 
crosses the Baramura and Atharamura (Fig.8a.).

(ii)	 AHPis another method in which the 
reclassified raster thematic layers of causative 
factors have been weighted and overlayed in GIS 
software. Weightage for each causative factor was 
calculated based on the individual importance given 
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according to Saaty’s scale. Landslide susceptibility 
zonation has been made in a hierarchical decision-
making framework, within which each factor’s 
importance is evaluated based on the relative value 
or priority of each causative factor.58 The priority 
was assigned among two factors successively, 

including how the individual factors influenced the 
landslide susceptibility. Based on that, the pairwise 
comparison matrix (PCM) was constructed, from 
which the weights of each causative factor were 
calculated.

Fig.8: Landslide susceptibility Models as per 8a. FR, 8b. AHP, 8c. RF

Fig.9: LSM wise areal distribution of landslide susceptible zones

These weights are defined using expert judgments in 
Satty’s scale and employing a pairwise comparisons 
matrix.48 The scale value ranges from 9 to 0, where 
9 represents more importance of one variable than 
other variables, and 1 represents equal importance 
of both variables. The consistency ratio shows the 
correctness of the calculated AHP weightage.  The 

accepted consistency ratio of the AHP is less than 
0.1 (10%).50 In this case, the estimated CR is for 
fifteen variables that are 0.0946 (CR= CI/RI), which 
is less than the prescribed value of 0.1; therefore, 
the AHP model is considered more suitable to assess 
the landslide susceptibility zones. 
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Fig.10: Overall Quality comparison based on recorded responses to Sensitivity and Specificity

Fig.11: ROC Curve and Precision-recall Curve for assessing the accuracy of landslide 
predictability for AHP, FR, and RF models

According to the computed weightage, elevation, 
slope, relative relief, TPI, SPI, and SBD are the most 
influencing factors. The estimated areal distribution 
of AHP is as follows: the distribution of Landslide 
Susceptibility classes, which have coverage of 
63%, 26%, 7%, 1.4% and 0.4% area of Tripura 
as categorized into very low, low, moderate, high, 
very high LSZ respectively (Fig.9.). According to 
AHP, the very high and high LSZ are confined into 

the high elevated hills of Jampui, Sakhan, and in 
the ridge section of Longtarai and Atharamura hill 
ranges (Fig. 8b).

(iii)	 The RF LSM model was performed using 
an ML algorithm. The past landslide polygons were 
used to train the RF model and derive the landslide 
susceptibility maps (LSM).59 The RF model used 
the causative factors as inputs and predicted the 
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landslide susceptibility accordingly. RF model can 
generate multiple decision trees (DT) from the given 
causative factors and past landslides.60 Tripura, the 
hyper-tuning technique, has been used to determine 
the best 97 decision trees. The final LSM has been 
produced based on the voting of importance (VI) of 
each causative factor from each DT. The VI denotes 
the degree of influence (DoI) of factors in landslide 
susceptibility in percentage. Among all the factors, 
slope has the highest DoI (12.99%), followed by 
elevation (10.6%), SPI (7.47), TPI (7.22%), SBD 
(7.22%), proximity to the road (7.22%), BSI (5.86%). 
The LULC has the lowest DoI. The estimated areal 
distribution on the RF model is as follows: 26 % 
and 41% fall under very low and low Landslide 
Susceptible Zones (LSZ) respectively. Notably, only 
0.7% are moderate, but 7% and 23% are estimated 
to be under high and very high LSZ (Fig.9.). In the 
RF model, hill ranges of Jampui, Sakhan, Longtarai, 
Atharamura, Baramura high land in western and 
southern parts. Tilla-lunga areas and fringes of 
upper flood plains are included into high and very 
high LSZ as those characterised by sharp changes 
in elevation and slope (Fig.8c.).

Validation of AHP, FR, and RF Model
The accuracy of all the models is assessed with 
the help of the Receiver Operating Characteristic 
(ROC) analysis in SPSS. The assessment includes 
three elements: (1) Sensitivity and Specificity, (2) 
Precision-Recall Curve, and (3) Overall model 
accuracy.  As discussed, the accuracy of the FR, 
AHP, and RF methods was estimated for landslide 
susceptibility mapping based on the AUC (Area 
under the ROC Curve) value. The AUC values 
for FR, RF, and AHP are 0.806, 0.810, and 0.744 
(Fig.10). Overall, these three have an AUC higher 
than the random guess (0.5) and are classified as 
a good prediction (AUC ranging from 0.744-0.801). 
According to overall Model Quality, the model's 
reliability is 0.71 for both the RF and FR models 
and 0.64 for AHP; these are all classified under the 
good quality model as all estimates are greater than 
0.5. Interestingly, the Precision-Recall Curve shows 
that the RF and FR methods outperformed similar 
ranges between 0.94 and 0.96, But the AHP goes 
downside, showing 0.80 (Fig.11.).

Conclusion 
As per AHP, FR, and RF models, among all, 
the topographic factors are the most influencing 

factors, followed by environmental factors such 
as vegetation cover, the bareness of soil, and 
anthropogenic factors such as proximity to roads. 
From all three LSM models, it can be depicted that 
the very low and low landslide susceptibility zones 
(LSZ) occupying similar patterns of land uses, such 
as agricultural lands and water bodies, are mainly 
characterized by sloping riverine plains. Notably, 
in the AHP LSM model, low and very low landslide 
susceptible zones occupy 90.34%, whereas in FR 
and RF, LSM models occupy 49.65%. Under the 
moderate LSZ, AHP was categorized as 7.60 %, 
although FR delineated a maximum area of 38.87%, 
and FR model demarcated the lowest, 0.78%. The 
categories of high and very high LSZ AHP model 
demarcated the lowest area, 1.95%, followed by 
FR, 11.46%, and RF, 32.02% area, respectively  
(Fig. 9). In the case of AHP LSM modelling, elevation, 
slope, and relative relief were estimated as the most 
influencing factors in landslide occurrence, showing 
maximum LSZ along the hills of Jampui, Sakhan, 
ridge part of Longtarai, and Atharamura.  The FR and 
RF model Frequency Ratio and Degree of Influence 
values indicate that all the factors combined affect 
landslide occurrence. FR model shows that high and 
very high areas are confined on hills and sparsely 
on steeply sloped tillas, whereas the RF model 
includes all steep sides of tillas, foothill regions, and 
hills (Table 3). The model's validation shows the RF 
model with the highest accuracy followed by FR, but 
AHP outperformed. It is also emphasized that the 
RF model is run on the cloud computation platform. 
It opens up another point of achievement and gets 
the highest accuracy, indicating its feasibility and 
flexibility by eliminating the burden of handling large 
amounts of geospatial data and high processing 
time. Notwithstanding, this study was devoted 
to suggesting potential LSM models. Still, it also 
indicates a promising solution for further research 
in the field of GIS-based landslide sensitivity 
zonation in Tripura. It is essential to improve the 
current understanding related to landslides and their 
different influencing conditioning factors, input spatio-
temporal datasets, sampling methods, development 
of spatial Inventories of landslides, and advanced 
modelling. This paper’s potential contributions is 
enabling potential development of early warning 
systems of landslides and mitigation efforts not only 
based on knowledge-based approaches but also 
based on statistical evidence, machine learning, 
cloud computing, and other advancement, especially 
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in the context of the highly dynamic and uncertain 
future of Earth.
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