

ISSN: 0973-4929, Vol. 16, No. (3) 2021, Pg. 818-835

Current World Environment

www.cwejournal.org

Soil Nutrient Evaluation and Crop Management for Sustainable Growth of Patiya village Cluster in Almora, Uttarakhand

PRABHAS KUMAR PANDE^{1*}, RAKESH KUMAR², SEEMA GUPTA³, RAJESH SACHDEV³, MUKTA DATTA MAZUMDER³, and LOVELEEN SATAPATHY⁴

¹Department of Geology, Ram Lal Anand College, University of Delhi, New Delhi-110021, India. ²Department of History, Ram Lal Anand College, University of Delhi, New Delhi-110021, India. ³Department of Statistics, Ram Lal Anand College, University of Delhi, New Delhi-110021, India. ⁴JRF [Geology & Environment (NMHS Project)], Ram Lal Anand College, University of Delhi, New Delhi-110021, India.

Abstract

The present study deals with the assessment of soil nutrients at four adjacent villages, 15 km NE of Almora, to understand the soil fertility and suitability of crops to help rejuvenate the agricultural activities in the region which subsequently will be used as a testing ground to mitigate prevailing Human-Wildlife Conflict in the study area. Soil samples were analyzed for textural classification, power of hydrogen (pH), Electrical Conductivity (EC), Organic Carbon percentage (OC%), available Nitrogen (N), Potassium (K), Sulphur (S), Boron (B), Manganese (Mn), 0.1M Hydrochloric Acid (HCl), and Diethylene Triamine Pentaacetic Acid (DTPA) extractable, Iron (Fe), Zinc (Zn), and Copper (Cu) to examine the soil fertility of the area. The soils of the region vary from loam to sandy loam. The soil reaction varies from slight to extremely acidic whereas the salinity was varying from non-saline to slightly saline. Low soil fertility index of N, P, K, Zn, B, and Fe; and medium soil fertility index of S, Mn, and Cu were observed, which is suggestive of additional requirement of Farm Yard Manure (FYM) and fertilizers to make them suitable for plantation. Through this study, an attempt has been made to recommend the selection and cultivation of high yield indigenous cash crops with the support of bio-fertilizers to maximize the use and production of these fallow lands and enhance the agricultural activities in the region and provide better livelihood options. The shift from the traditional method of plowing and sowing to new basic techniques has brought about encouraging results to the extent that these fields have now become favorite destinations of wild boars and monkeys. Hence, allowing us to mitigate this problem through various means.

Article History Received: 03 June 2021 Accepted: 20 December 2021

Keywords

Crops; Kumaon; Macronutrients; Micronutrients; Nutrient Indices; Patiya, Almora; Soil Fertility; Uttarakhand.

CONTACT Prabhas Kumar Pande **K** prabhaspandey.geo@rla.du.ac.in **O** Department of Geology, Ram Lal Anand College, University of Delhi, New Delhi-110021, India.

$\textcircled{\bullet}$

© 2021 The Author(s). Published by Enviro Research Publishers.

This is an **∂** Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.12944/CWE.16.3.14

Introduction

The mountainous regions have a wide range of macro and micro climate due to a great influence on soil genesis processes and vegetation¹. The genesis and characteristics of soils derived from various metamorphic rocks in Kumaon Himalayas were studied, and the soils were classified under three soil orders viz. Entisols, Inceptisols, and Alfisols.^{1,2}

The study area, falling in the Almora District, Uttarakhand (India), covering nearly 25 km² of geographical area, lying between an elevation of 1300 m to 1550 m above MSL, is located between the latitude of 29°38'N to 29°42'N and longitude of 79°38'E to 79°43'E.The temperature range was found to be between 31.3°C and 3.43°C. The average annual rainfall in the region is around 1013.9 mm, mainly confining to the rainy season. Agriculture was one of the major occupations of the hill people because of the presence of various agro-climate zones along the altitudinal gradient. In the past few decades, it has been greatly affected due to the harsh climatic conditions resulting in un-predictable rains and drying natural run-offs. The presence of a large number of fallow lands indicates that villagers are no more interested in this occupation; whatever little agricultural activities that have been seen are done as customary in a traditional way only, which is not enough to support livelihood. The present study relates to assessment of the macro- and micro-nutrient present in soils to understand soil fertility and recommend fertilizers for optimum growth of the indigenous crops. Fallow lands measuring approximately 10 acres have been identified in four villages, namely, Kasoon, Bhatgaon, Patiya and Kotyura (Figure 1), for solar fencing to mitigate Human Wildlife Conflict and rejuvenate agricultural operations in the region.

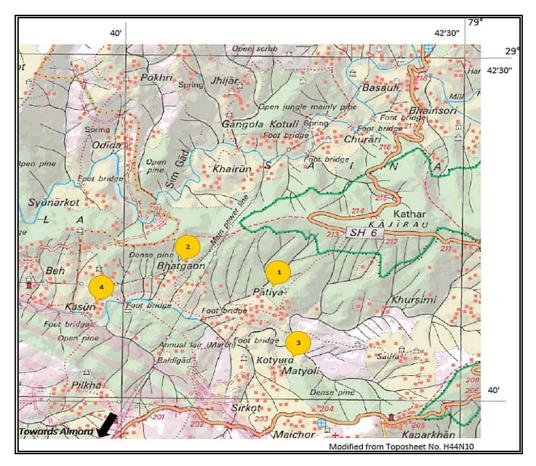


Fig. 1: Study area map showing four villages (1- Patiya; 2- Bhatgaon; 3- Kotyura; 4- Kasoon) selected for soil analysis

Materials and Methods

Soil, a mixture of minerals and organic materials essential for plant life, contains 15 out of the 18 elements vital for plant growth.^{3,4,5,6} The essential elements used by the plants in large quantities (primary and secondary macronutrients) and in small quantities (micronutrients) are responsible for plant growth is supplied by soil only.⁶ The determining factor in the crop yield happens to be the essential nutrients in the soil and its ability to sustain agricultural growth⁷. The evaluation of soil quality is important to determine the fertilizer recommendation to increase crop health and maximize yield and in turn help farmers to effectively manage their agricultural practices.^{8,9}

Besides physico-chemical and biological conditions in the rhizosphere the nutrient up take by plants is also dependent upon pH, available nutrients, organic matter content, and adsorptive surfaces.^{7,10,4} Hence, the study of the available pool of nutrients and their balance in the soil along with the evaluation of fertility status of the soils is foremost to understand soil health and plant-soil nutrient relationship for sustainable agriculture production.¹⁰

Collection and Preparation of Samples

A total of 26 representative soil samples, from a depth of 0-20 cm were collected using a hand-held soil auger of 1 inch core diameter and 10 inch length. Soil samples were air-dried in shade, discarding plant residues, gravels, and other materials. These were then pulverized and sieved to obtain 2 mm size fraction for chemical analysis and the samples were stored in airtight containers for further examination.

Sample Soil Analysis

The soil samples were examined for pH, EC, Organic-C, available-N, -P, -K, -S, -B, -Mn, 0.1M HCl, and DTPA extractable-Fe, -Zn, and -Cu. The analysis was carried out using PUSA (STFR) soil Meter Kit, recommended by ICAR which analyzes soil parameters quantitatively and gives crop-specific fertilizer recommendation including field crops, horticultural crops, and spices.

Standard Nomencla	ture of th	ne ranges of	the soil mac	ro-nutrients	F	langes of soil	nutrients based on STFR Meter (mgkg3)	
Nutrient	Low	Medium	High	V. High	Nutrient	Deficient	Critical limit for STFR Meter	Sufficient
Organic Carbon	<0.5	0.5-0.75	>0.75		Sulphur (mgkg')	<10	10	≥10
(%)					Zinc (mgkg ⁻¹)	<1.3	1.3	≥1.3
Nitrogen (kgha ³)	<280	280-560	>560		Iron (mgkg ⁻¹)	<14	14	≥14
Phosphorus (kgha')	<10	10 - 25	>25-50	>50	Copper (mgkg ¹)	<0.72	0.72	≥0.72
					Manganese (mgkg ⁻¹)	<2.5	2.5	≥2.5
		100.000				-0.5	0.5	>0.5
Potassium (kgha ⁻¹) Types of so	<120 il reactio	120-280 ns based on	>280-600	>600 ues	Boron (mgkg*) Relations	<0.5	0.5 EC and salinity effect from PUSA STFR M	≥0.5
			soil pH valu		Relations EC of extract	hip between I Salt (%) in	EC and salinity effect from PUSA STFR M	
Types of so		ns based on	soil pH valu		Relations EC of extract (mScm ⁴)	hip between I Salt (%) in soil	EC and salinity effect from PUSA STFR M Salinity Effect	ieter
Types of so pH Range		ns based on Soil Read	soil pH valu ction y acid		Relations EC of extract	hip between I Salt (%) in	EC and salinity effect from PUSA STFR M	ieter
Types of so pH Range <4		ns based on Soil Read Extremely	soil pH valu tion y acid acid		Relations EC of extract (mScm ¹) 0- 4	hip between I Salt (%) in soil 0- 0.05	EC and salinity effect from PUSA STFR M Salinity Effect Non-Saline (Salinity effect mostly negligible	ieter
Types of so pH Range <4 4-5		ns based on Soil Read Extremely Strongly	soil pH valu ction y acid acid ly acid		Relations EC of extract (mScm ⁴)	hip between I Salt (%) in soil	EC and salinity effect from PUSA STFR M Salinity Effect Non-Saline (Salinity effect mostly negligible Very slightly saline (Yield of very sensitive	eter
Types of so pH Range <4 4-5 5-6		ns based on Soil Read Extremely Strongly Moderate	soil pH valu ction y acid acid ly acid		Relations EC of extract (mScm ⁻¹) 0-4 4-8	hip between I Salt (%) in soil 0- 0.05 0.05- 0.1	EC and salinity effect from PUSA STFR M Salinity Effect Non-Saline (Salinity effect mostly negligible Very slightly saline (Yield of very sensitive restricted)	eter e) crops may be
Types of so pH Range <4 4-5 5-6 6-7		ns based on Soil Read Extremely Strongly Moderate Slightly a Neutral	soil pH valu ction y acid acid ly acid		Relations EC of extract (mScm ¹) 0- 4	hip between I Salt (%) in soil 0- 0.05	EC and salinity effect from PUSA STFR M Salinity Effect Non-Saline (Salinity effect mostly negligible Very slightly saline (Yield of very sensitive	eter crops may be icted. Cotton,

Fig. 2: Ranges of soil nutrients, pH and EC value categorization based on STFR standards used in present studies

Categorization of Soil Nutrient Status

Categorization of soil nutrients, pH, and EC has been done based on the values provided along with the instrument. Figure 2 shows the ranges of the soil nutrients, pH, and EC value categorization based on STFR standards. Based on these values, the various nutrients were classified into Low-Medium-High, Sufficient-Deficient, and subsequent fertilizers were recommended for the soils.

Nutrient Indices (NI)

The nutrients present in the soil were calculated for their index values on the basis of formula suggested by Parker *et al*¹¹ where in indices were classified as low (<1.67), medium (1.67-2.33), and high (>2.33).⁴

$$NI (NutrientIndex) = \frac{(N_l \times 1) + (N_m \times 2) + (N_h \times 3)}{N_t}$$

N_t = the Total number of samples analyzed for a nutrient in any given area.

 N_{I} = number of samples falling in low category of nutrient status.

 N_m = number of samples falling in medium category of nutrient status.

 $N_{\rm h}$ = number of samples falling in high category of nutrient status.

Nutrient supplying capacity of soil to plants is measured by Nutrient Index and comparative analysis of the soil fertility of an area is carried out using a single value for each nutrient.^{12,13}

Results and Discussion Physico-Chemical Properties of Soil

The soil of the study region has good natural drainage with mean thickness ranging between 0.1 to 0.5 m) and colour varying from light to moderately dark showing varying physico-chemical properties.

Textural classification of soil¹⁴ revealed the dominance of silty to sandy loam type of soil in the study region. Bhatgaon, Kotyura, and Kasoon exhibit Loam, Sandy Ioam (+Organic Content), and Sandy Ioam texture, respectively. Patiya has been further divided into four regions, namely, Samdeo-Nigad, Tanala, Aegra, and Samdeo, based on varying altitude and terrain, the textural class of these soils varied from silty Ioam, Ioam, sandy Ioam (+ organic content) & sandy Ioam in these four regions, respectively.

pH, EC, and OC%

Table 1 elaborates the physico-chemical properties of each of the collected soil samples and its classification. Figure 3, 4, and 5 represent the graphical comparison of these physico-chemical properties of the collected soil samples.

Based on the values obtained from PUSA STFR Meter Kit, the pH of soil samples from Patiya displayed variance from 6.34 to 6.98 having a mean value of 6.6 (slightly acidic). The soils of Samdeo-Nigad, Tanala, Aegra, and Samdeo have 6.61, 6.475, 6.4625, and 6.735 mean pH values respectively. The pH of soil samples has a mean value of 5.4 (moderately acidic) in Bhatgaon, 5.9 (moderately acidic) in Kotyura, and 3.7 (extremely acidic) in Kasoon (Figure 3).

Village Name	Sample Code	Soil Type	рН	Soil Reaction	EC (mScm ⁻¹)	Salinity Effect	OC (%) & Category (L)- Low, (M)-Medium (H)- High
Patiya	111	silty	6.44	slightly acidic	7.375	slightly saline	0.3966 (L)
Samdeo	112	loam	6.78	slightly acidic	7.37	slightly saline	0.3408(L)
-Nigad	121	loam	6.61	slightly acidic	4.752	slightly saline	0.391(L)
	122		6.34	slightly acidic	5.113	slightly saline	0.3781(L)
Tanala	131	sandy	6.35	slightly acidic	5.72	slightly saline	0.4841(L)
Aegra	132	loam	6.38	slightly acidic	4.458	slightly saline	0.2964(L)
	133	(OC+)	6.58	slightly acidic	0.165	non-saline	0.284(L)
	134		6.54	slightly acidic	0.161	non-saline	0.1983(L)
	141	sandy	6.69	slightly acidic	0.078	non-saline	0.2697(L)
	142	loam	6.96	slightly acidic	0.086	non-saline	0.1239 (L)
Samdeo	143	(OC+)	6.75	slightly acidic	0.089	non-saline	0.3902 (L)
	144		6.75	slightly acidic	0.104	non-saline	0.7592 (H)
	145		6.52	slightly acidic	0.078	non-saline	0.4765 (L)
	146		6.74	slightly acidic	0.083	non-saline	0.153 (L)
Bhatgaon	201	loam	6.99	slightly acidic	0.09	non-saline	0.1814 (L)
	202		6.5	slightly acidic	0.076	non-saline	0.3153 (L)

Table 1: Soil Properties- Physical and Chemical

	203		4.07	strongly acidic	1.849	non-saline	0.3291 (L)
	204		3.95	strongly acidic	2.038	non-saline	0.3662 (L)
Kotyura	301	sandy	6.74	slightly acidic	1.321	non-saline	0.5895(M)
	302	loam	6.78	slightly acidic	1.07	non-saline	0.4951 (L)
	303	(OC+)	6.84	slightly acidic	1.181	non-saline	0.516 (M)
	304		3.38	strongly acidic	1.021	non-saline	0.4447 (L)
Kasoon	401	sandy	3.26	strongly acidic	1.013	non-saline	0.3899 (L)
	402	loam	4.14	strongly acidic	1.165	non-saline	0.5154(M)
	403		4.37	strongly acidic	1.215	non-saline	0.3458 (L)
	404		3.05	strongly acidic	1.353	non-saline	0.3462 (L)

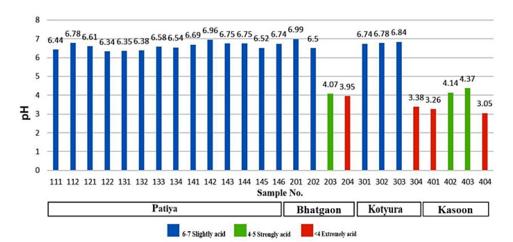


Fig. 3: pH values of the collected 26 samples

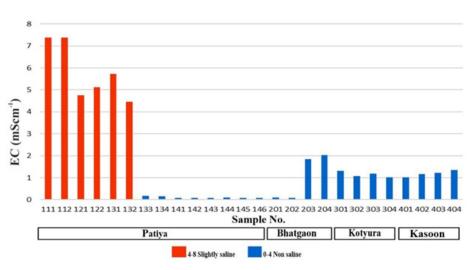


Fig. 4: EC (mScm⁻¹) values of the collected 26 samples

The EC of soil samples from Patiya shows a wide range that varies from 0.078 mScm⁻¹ to 7.375 mScm⁻¹ The soils of Samdeo-Nigad, Tanala, Aegra and Samdeo have 7.37 mScm⁻¹ (slightly saline), 4.93

mScm⁻¹ (slightly saline), 2.63 mScm⁻¹ (non-saline) and 0.086 mScm⁻¹ (non-saline) mean EC values, respectively. The average EC values of soil samples are 1.01325 mScm⁻¹ (non-saline) in Bhatgaon, 1.14825 mScm⁻¹ (non-saline) in Kotyura, and 1.1865 mScm⁻¹ (non-saline) in Kasoon. Electrical Conductivity analysis shows that the study area has low salinity on average (Figure 4).

The organic-C content in the soils of Patiya ranges between 0.1239-0.7592% with an average

value of 0.353%. The soils of Samdeo-Nigad, Tanala, Aegra and Samdeo have 0.3687% (low), 0.3845% (low), 0.3157% (low) and 0.3621% (low) mean OC% content respectively. This content has a mean value of 0.298% (low) in Bhatgaon, 0.5113% (medium) in Kotyura, and 0.3993% (low) in Kasoon (Figure 5).

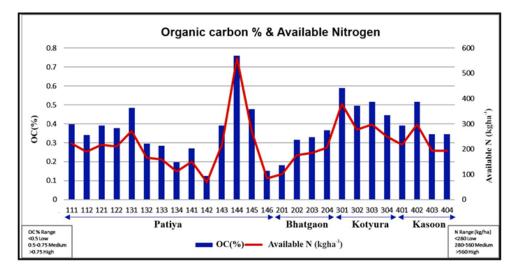


Fig. 5: Organic Carbon % and Available Nitrogen (kgha⁻¹) values of the collected 26 samples

Available Nutrients (Primary and Secondary)

The available primary nutrients (N, P, and K) and secondary nutrient (S) in the soil, as obtained from the PUSA STFR Meter Kit, have been tabulated in Table 2, along with their classification. Figure 6, 7, and 8 show the graphical comparison of P, K, and S content of the collected soil samples respectively. The fertilizers for these major macronutrients such as N-P-K are crop recommended. Table 2 also summarizes the crop RDF to be applied based on the obtained category of these nutrients.¹⁵

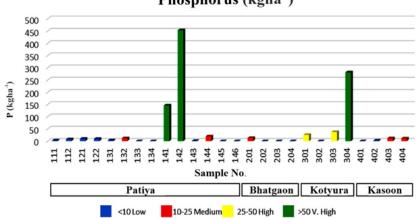


Fig. 6: Phosphorus (kgha⁻¹) values of the collected 26 samples

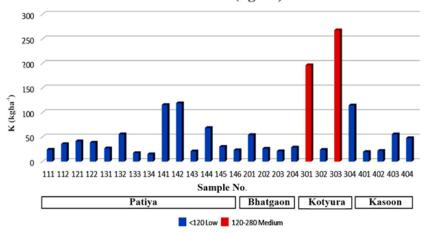

Village Name	Sample Code	N(kgha [.] 1) & Category	P (kgha⁻¹)& Category	K (kgha ⁻¹) & Category	S(mgkg⁻¹) & Category
			- Medium, (H)- t, (S)- Sufficier	High, (VH)- Ve nt	ry High
Patiya	111	222 (L)	2.5 (L)	24.5 (L)	51.7 (S)
Samdeo	112	190 (L)	7.6 (L)	35.8 (L)	66 (S)
-Nigad	121	218 (L)	9.7l (L)	41.6 (L)	71.2 (S)
Tanala	122	211 (L)	9.2 (L)	38.7 (L)	13 (S)
	131	271 (L)	3.5 (L)	27 (L)	24.6 (S)
Aegra	132	166 (L)	12.1 (M)	55.8 (L)	86.8(S)
	133	159 (L)	0 (L)	17.6 (L)	33(S)
	134	111(L)	0 (L)	15.1(L)	19.2(S)
	141	151 (L)	145.9 (VH)	115.5 (L)	72.3(S)
Samdeo	142	69 (L)	453.3 (VH)	119.1 (L)	57.9(S)
	143	218 (L)	0.9 (L)	21(L)	53.4(S)
	144	560 (H)	19.6 (M)	68.5(L)	20.4(S)
	145	266(L)	0(L)	30.2(L)	17.6(S)
	146	85(L)	0(L)	23.4(L)	89(S)
Bhatgaon	201	101(L)	13.1 (M)	54.4(L)	82.4(S)
U	202	176(L)	0 (L)	26.5 (L)	91.2 (S)
	203	184 (L)	0 (L)	21.2(L)	41 (S)
	204	205 (L)	0 (L)	28.9(L)	77 (S)
Kotyura	301	380 (M)	25.6 (H)	196.3 (M)	112.1(S)
2	302	277 (L)	0(L)	24.1 (L)	96.8 (S)
	303	297 (M)	37.4 (H)	267.7 (M)	104.9(S)
	304	249 (L)	281.3 (VH)	114.5 (L)	62.3 (S)
Kasoon	401	218 (L)	0(L)	19.8 (L)	85.1 (S)
	402	297 (M)	2.4 (L)	22 (L)	29 (S)
	403	193 (L)	11.7 (M)	55.7 (L)	20.2(S)
	404	193 (L)	11.1 (M)	48.1 (L)	33.7(S)
	Crop R	()	ed as per Cate	()	

Table 2: Available primary (N, P, K) and secondary (S)nutrient in the soil and Crop RDF to be applied based on Category of N-P-K

Low category- 25% more than crop RDF, Medium category- Exact crop RDF, High Category- 25% less than crop RDF, Very High category- No fertilizer of that nutrient

Available-N (Figure 5) of soil samples from Patiya has a mean value of 206.928 kgha⁻¹ (low). The soils of Samdeo-Nigad, Tanala, Aegra, and Samdeo have 206 kgha⁻¹ (low), 214.5 kgha⁻¹ (low), 176.75 kgha⁻¹ (low) and 224.833 kgha⁻¹ (low) mean available N values, respectively. The average available-N value of soil samples is 166.5 kgha⁻¹ (low) in Bhatgaon, 300.75 kgha⁻¹ (medium) in Kotyura and 225.25 kgha⁻¹ (low) in Kasoon. Phosphorus level has an average value of 47.45 kgha⁻¹ (high) in Patiya; 3.275 kgha⁻¹ (low) in Bhatgaon; 86.075 kgha⁻¹ (very high) in Kotyura; and 6.3 kgha⁻¹ (low) in Kasoon (Figure 6).

Potassium level has an average value of 45.2714 kgha⁻¹ (low) in Patiya; 32.75 kgha⁻¹ (low) in Bhatgaon; 150.65 kgha⁻¹ (medium) in Kotyura; and 36.4 kgha⁻¹ (low) in Kasoon (Figure 7).

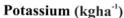
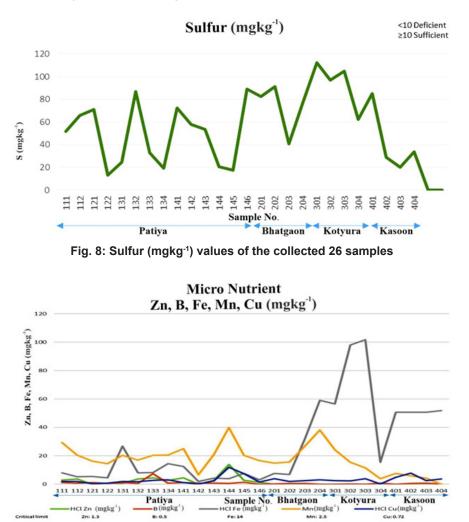



Fig. 7: Potassium (kgha⁻¹) values of the collected 26 samples

Fe: 14 Fig. 9: Micro Nutrient Zn, B, Fe, Mn, Cu (mg/kg) values of the collected 26 samples

HCI Cu(mgkg⁻¹)

Cu: 0.72

Mn: 2.5

HCI Zn (mgkg⁻¹)

Sulfur content in the all the soil samples were found to be sufficient. It has a mean value of 48.29 mgkg⁻¹ (sufficient) in Patiya; 72.9 mgkg⁻¹ (sufficient) in Bhatgaon; 94.025 mgkg $^{-1}$ (sufficient) in Kotyura and 42 mgkg $^{-1}$ (sufficient) in Kasoon (Figure 8)

Village Name	Sample No.	Zn (mgkg ⁻¹) HCI /DTPA (Category)	B(mgkg⁻¹) (Category)	Fe (mgkg⁻¹) HCI/DTPA	Mn(mgkg ⁻¹) (Category) (Category)	Cu (mgkg ⁻¹) HCI/DTPA (Category)
			(S)- Suffic	ient (D)- De	eficient	
Patiya	111	2.8/1.3 (S)	1.035 (S)	7.9/2.54(D)	29.31 (S)	1.84/0.51 (S)
Samdeo	112	3.7/1.7 (S)	0.648(S)	5.26/1.69(D)	20.56 (S)	1.84/0.51 (S)
-Nigad	121	0/0(D)	1.087(S)	5.48/1.76(D)	16.23 (S)	0.39/ 0.1 (D)
Tanala	122	0.7/0.3 (D)	0.463 (D)	4.5/1.44 (D)	14.43 (S)	0.73/0.25(S)
	131	0.5/0.2 (D)	1.06 (S)	26.74/8.59 (S)	20.3 (S)	1.84/0.51(S)
Aegra	132	3.7/1.7(S)	0.465 (D)	7.87/2.52 (D)	17.04(S)	1.7/0.47(S)
-	133	4.4/2(S)	7.343(S)	8.18/2.63 (D)	20.33(S)	2.64/0.73(S)
	134	2.7/1.2(S)	0.692(S)	14.49/4.65 (S)	20.56(S)	3.16/0.87(S)
	141	4.4/2(S)	1.067(S)	12.48/4.01(D)	25.08(S)	1.05/0.29(S)
	142	0/0 (D)	0.645(S)	1.86/0.6(D)	6.68(S)	0.04/0.01(D)
Samdeo	143	2.7/1.2(S)	0.765(S)	4.32/1.39(D)	20.8(S)	2.25/0.62 (S)
	144	13.9/6.4(S)	0.461 (D)	3.81/1.22(D)	39.83(S)	11.9/3.31(S)
	145	2.7/1.2(S)	1.241 (S)	7.6/2.44(D)	20.35(S)	7.4/2.05(S)
	146	1.3/0.6(S)	0.001(D)	3.06/0.98(D)	16.52(S)	1.47/0.4(S)
Bhatgaon	201	0/0(D)	0.042(D)	7.58/2.43(D)	14.79(S)	3.92/1.08(S)
	202	0/0(D))	0.504 (S)	6.84/2.2 (D)	15.55(S)	1.86/0.51(S)
	203	0/0(D))	0.435(D)	31.93/10.26(S)	26.85(S)	2.54/0.7(S)
	204	0/0(D)	0.001(D)	59.14/19.01(S)	38.16(S)	2.98/0.83(S)
Kotyura	301	0/0(D)	0.001(D)	56.56/18.18(S)	24.21(S)	2.41/0.67(S)
	302	0/0(D)	0.155(D)	98.03/31.51(S)	15.43(S)	2.35/0.65(S)
	303	0/0(D)	0.001(D)	101.81/32.7(S)	11.42(S)	3.89/1.08(S)
	304	0/0 (D)	0.69 (S)	15.5/4.81(S)	3.9(S)	0.15/0.04(D)
Kasoon	401	0/0(D)	0.001 (D)	50.58/16.25(S)	7.63(S)	4.89/1.36(S)
	402	0/0(D)	0.438 (D)	50.64/16.27(S)	5.91(S)	7.76/2.06(S)
	403	0/0(D)	0.651 (S)	50.58/16.25(S)	4.33(S)	2.45/0.68(S)
	404	0/0(D)	0.104 (D)	51.89/16.67(S)	0.01 D	3.75/1.04(S)

 Table 3: Micronutrient (Zn, B, Fe, Mn, and Cu) values of soil by the STFR Meter

 and the recommended dose of fertilizer for the deficiency

Nutrient Deficiency/ Recommended Fertilizer (with Quantity in mg/Kg) Zn/ZnSO₄(10) B/Borax(4) Fe/FeSO₄(40) Mn/MnSO₄(50) Cu/CuSO₄/4

Available Micronutrients

Table 3 tabulates the micronutrients along with their category and the recommended dose of fertilizer for the deficiency of these micronutrients by the STFR Meter and Figure 9 shows the trend of these micronutrients in the study region. The STFR Meter Kit recommends the dose of fertilizer for these

micronutrients directly based on their obtained values and category.

HCl and DTPAZn content were found to have a mean value of 3.25 mgkg⁻¹ and 1.5 mgkg⁻¹ respectively in Samdeo-Nigad (sufficient); 0.35 mgkg⁻¹ and 0.15 mgkg⁻¹ respectively in Tanala (deficient); 2.825

mgkg⁻¹ and 1.275 mgkg⁻¹ respectively in Aegra (sufficient); and 4.1667 mgkg⁻¹ and 1.9 mgkg⁻¹ respectively in Samdeo (sufficient) in Patiya; and 0 mg/kg in Bhatgaon, Kotyura and Kasoon (deficient). The STFR Meter recommended the 10 kgha⁻¹ ZnSO₄ for the deficient soils.

Boron content was found to have a mean value of 1.2124 mgkg⁻¹ (sufficient) in Patiya; 0.2455 mgkg⁻¹ (deficient) in Bhatgaon; 0.21175 mgkg⁻¹ (deficient) in Kotyura; and 0.2985 mgkg⁻¹ (deficient) in Kasoon. Further, the STFR Meter recommended the 4 kgac⁻¹ Borax for deficient soils.

HCI and DTPA Fe content were found to be deficient in Patiya (mean value of 8.111 mgkg⁻¹and

2.6043 mgkg⁻¹ respectively); sufficient in Bhatgaon (mean value of 26.3725 mgkg⁻¹ and 8.475 mgkg⁻¹ respectively); sufficient in Kotyura (mean value of 67.975 mgkg⁻¹ and 21.805 mgkg⁻¹ respectively); and sufficient in Kasoon (mean value of 50.9225 mgkg⁻¹ and 16.36 mgkg⁻¹ respectively). The STFR Meter recommended the 40 kgac⁻¹ FeSO₄ for the deficient soils of Patiya.

Mn content in all the soil samples was found to be sufficient except for one sample from Kasoon. The Mn content has an average value of 20.573 mgkg⁻¹ (sufficient) in Patiya, 23.8375 mgkg⁻¹ (sufficient) in Bhatgaon; 13.749 mgkg⁻¹ (sufficient) in Kotyura; and 4.47 mgkg⁻¹ (sufficient) in Kasoon.

Village Name	Sample Size	Category	N	Ρ	к	S	Zn	В	Fe	Mn	Cu
Patiya		Low	13	10	14	-	4	4	12	-	2
		Medium	-	2	-	14	10	10	2	14	12
	14	High	1	2	-	-	-	-	-	-	-
		NI	1.1428	1.4286	1	2	1.7143	1.7143	1.1428	2	1.8571
		NI	Low	Low	Low	Medium	Medium	Medium	Low	Medium	Medium
Bhatgad	on	Low	4	3	4	-	4	3	2	-	-
		Medium	-	1	-	4	-	1	2	4	4
	4	High	-	-	-	-	-	-	-	-	-
		NI	1	1.25	1	2	1	1.25	1.5	2	2
		NI	Low	Low	Low	Medium	Low	Low	Low	Medium	Medium
Kotyura		Low	2	1	2	-	4	3	-	-	1
		Medium	2	-	2	4	-	1	4	4	3
	4	High	-	3	-	-	-	-	-	-	-
		NI	1.5	2.5	1.5	2	1	1.25	2	2	1.75
		NI	Low	High	Low	Medium	Low	Low	Medium	Medium	Medium
Kasoon		Low	3	2	4		4	3		1	-
		Medium	1	2		4		1	4	3	4
	4	High									
		NÎ	1.25	1.5	1	2	1	1.25	2	1.75	2
		NI	Low	Low	Low	Medium	Low	Low	Medium	Medium	Medium

Table 4: The categories of nutrients and nutrient indices (Low, Medium and High) of the soil in the study region

	ιαρίε ο. κεсопוחениец сторя ана шен есоюдісаι, шалиге ана пицпенц гединешения. (שמומ useu ironi various sources	апи пипель гедигение	115. (Udl	a useu i		sources
Crop & Season	Soil properties and Irrigation Climate [Temperature (°C), Rain-fall (cm)]	Manure Requirement Nutrient Requirement (kgha ^{.1}) (Ton per hectare) N P ₂ O _s K ₂ O S	Nutrien N	it Requir P₂0₅	ement (kgh _i K ₂ O S	a ⁻¹) Suitable location in study area
Mustard & Rapeseed Rabi (Oct-Nov)	Sandy loam to clay loam soils, better yield on light loam soils. Neutral pH is ideal. Requires watering at pre-bloom and pod filling stages. [22-25°C; 25-40 cm]	15-20 FYM	60-90	60	40 -	Aegra
Sesame Kharif (July)	Well-drained light to medium textured soils is preferred. Optimum pH range - 5.5 to 8.0. Usually grown under rain fed conditions. [25-35°C]	12.5 FYM	20	10	' 0	Patiya
Turmeric Kharif (May-June)	Better yield in well-drained sandy or clayey loam having pH range of 4.5-7.5. Grown as a rain fed crop so irrigation can be provided depending upon rainfall. [24-28° C; 70-230 cm]	30-40 FYM	60	50	- 120	Aegra, Samdeo Kotyura
Ginger Kharif (May-June)	Provides best yield on well-drained soils (sandy loam, clayey loam, red loam or lateritic loam). Not desirable to grow in the same soil repeatedly as it is an exhausting crop. Ideal pH range- 6-6.5. Grown as rain fed crop so irrigation can be provided depending upon rainfall intensity and rainfall frequency. [12-35°C; 150 cm]	30-40 FYM	180	15	- 100	Tanala Kotyura
Pear Rabi (Jan-July)	Good results can be achieved when grown in deep and well drained fertile soil without having any hard pan up to 2-meter depth. pH of soil should not be more than 8.7. A well distributed average rainfall of 75–100 cm is required throughout the year for pear cultivation. [10-25° C; 75-100 cm]	FYM per tree 5 kg for 1 yr of age and for higher ages in the multiple of 5.	0.5 kg / tree	1 kg / tree	1 kg - / tree	Aegra, Samdeo Kasoon
Guava Kharif	Gives good yield in all type of soil. Best results can be achieved when grown under deep, well drained, sandy loam to clayey loam soil. Young plants require water	FYM /tree 10-20 kg 1-3 yr 25-40 kg 4-6 yr	0.4 kg / tree	0.25 kg / tree	0.25 kg 0.35 kg / tree / tree	Samdeo-Nigad Aegra Samdeo Kasoon

Table 5. Recommended crops and their ecological, manure and nutrient requirements. (Data used from various sources ^{22,33})

828

	at weekly interval in summer month and 2-3 watering cycle during winter month. [15-30° C; 100 cm]	40-50 kg7-10yr 50 kg>10 yr				
Mango Rabi (February-July)	Grows on variety of soils. pH of soil should be less than 8.5. Summer irrigation- interval of 5-7 days; winter irrigation- interval 25-30 days; Rainy season- irrigation depends upon rainfall intensity. [22-27° C; 100 cm]	Kg/tree (Age) Well decomposed cow dung 5-20 (1-3yr), 25 (4-6 yr),60-90 (7-10 yr), 100 >10 yr	65	20	75 -	Aegra, Samdeo
Litchi Rabi (August- Sept)	Also grows on variety of soils. Deep, fertile, well drained, Kg/tree (Age) Well medium texture soils are suitable. pH- 5.5 to 7. Cannot decomposed cow tolerate high pH and saline soils. Irrigation required at all dung 10-20(1-3 yr) stages of development. [25-35° C; 120 cm] 25-40(4-6 yr) 60 >10 yr	Kg/tree (Age) Well decomposed cow dung 10-20(1-3 yr) 25-40(4-6 yr) 40-50(7-10 yr) 60 >10 yr	kg/ tree 0.36 1.08 1.2	kg/ tree 0.15 0.3 0.45 0.5	kg/ - tree 0.18 0.36 0.54 0.6	Samdeo
Barley Rabi (Mid Oct-Nov)	Gives yield in moderate loam to sandy soils with neutral to saline response and moderate fertility. Acidic soils are not suitable. Two or three irrigation are required during its life cycle. [12-32° C; 80-110 cm]	30 FYM	60	30	נ י	Patiya Kotyura
Barnyard millet (Madira) Kharif (April-May Uttarakhand	Barnyard Cultivated in soils of marginal fertility. Gives best results millet (Madira) on sandy loam to loam soil. Grown as a rain fed crop Kharif (April-May)and does not require any irrigation. Uttarakhand	5-10 FYM	20	20	0	Tanala, Bhatgaon Kotyura
Fingermillet (Manduwa/ Ragi) Kharif (June-Oct) Uttarakhand	Fingermillet Grows on a variety of soils and is alkaline resistant to (Manduwa/ some extent. Suitable soil is alluvial, loamy and sandy Ragi) with good drainage. Finger millet sown during Kharif Kharif (June-Oct) ordinarily does not require much water. [20-34° C; 10 cm] Uttarakhand	5-10 FYM	40	20		Tanala, Bhatgaon Kotyura
Horsegram (Gahat) Kharif	Grows on wide range of soils which are free from alkalinity. A drought-resistant crop requiring a rainfall of about 800 mm. Performs well even under low rainfall areas. [25-30° C; 80cm]	10-15 FYM	20	30		Bhatgaon Kotyura

Blackgram (Urad) Kharif	Appropriate soil is well-drained loam, pH of 6.5 to 7.8. Inability to grow on saline soils. If needed, irrigation is provided depending upon the climatic conditions. [15-30° C; 50-75 cm]	10-15FYM	20	40	20	20	Bhatgaon Kotyura
Lentil (Masoor) Rabi (Oct-March)	Grown on all types of soil. Saline, alkaline, or water- logged soils should be avoided. Mainly grown as a rain fed crop. [18-20° C; 100 cm]	4-5 FYM	20	40	20	20	Bhatgaon Kotyura
Soyabean Kharif (Mid-June)	Well drained, fertile loamy soils. Optimum pH range- 6 to 7.5. Waterlogged or saline soils are not suitable for cultivation. Overall crop requires three to four irrigations. Irrigation applied depending upon rainfall conditions. [18-38° C; 30-60 cm]	15 FYM	20	60	40	20	Patiya Kotyura Kasoon
Black Soyabean (Kala Bhat) Kharif (Mid-June)	Black SoyabeanGrows in natural drainage and fertile loamy soils.(Kala Bhat)Optimum pH range- 6 to 7.5. Waterlogged or saline(Karifsoils are not suitable for cultivation. Overall crop requires(Mid-June)three to four irrigations. Irrigation applied dependingupon rainfall conditions. [18-38° C; 30-60 cm]	15 FYM	20	60	40	20	Patiya Kotyura Kasoon
Pigeon Pea Kharif (June-July)	Fertile and well drained loamy soils. Optimum pH range - 5-6 FYM 6.5 to 7.5. Three to four weeks after sowing first irrigation must be applied. Remaining irrigation is dependent upon rainfall intensity. [35-38° C; 60-65 cm]		25	40	30	20	Patiya, Bhatgaon

Table 6: Manure, nutrient, and Fertilizer requirement for the pulses to be grown in the areas studied in the project

			pulses	to be grown	in the areas	pulses to be grown in the areas studied in the project	project					
Village Name	Crop	Manure Soil Requirement Treatment	Soil Treatment	Nutrient Re	Nutrient Requirement (kgha¹)	kgha ⁻¹)		Fertilize	Fertilizer Requirement (kgha¹)	ment (kg	jha⁻¹)	
				z	P ₂ O ₅	K ₂ 0	S	ZnSO₄	ZnSO4 CuSO4 FeSO4 MnSO4	FeSO4	MnSO₄	Borax
Patiya	Soyabean 15tha ⁻¹ FYM	15tha ⁻¹ FYM	1	20 Since low, Add 25% extra	60 Since high, Add 25% less	40 Since low, Add 25% extra	20	I	I	100	I	
Bhatgaon Pigeon Pea	Pigeon Pea	5-6tha ⁻¹ FYM	2tha ⁻¹ lime - 7 days before sowing	25 Since low, Add 25% extra	40 Since low, Add 25% extra	30 Since low, Add 25% extra	20	25	I	I	I	10
Kotyura	Black Soyabean	15tha ⁻¹ FYM	2ttha ⁻ⁱ lime - 7 days before sowing	20 Since medium, add exact amount.	60 Do not apply	40 Since medium, add exact amount.	20	25	I	I	I	10
Kasoon	Soyabean	15tha ⁻¹ FYM	2tha⁺lime - 7days before sowing.	20 Since low, Add 25% extra	60 Since low, Add 25% extra	40 Since low, Add 25% extra	20	25	I	I	I	10

HCl and DTPA Cu content were found to have a mean value of 1.84 mgkg⁻¹ and 0.51 mgkg⁻¹ respectively in Samdeo-Nigad (sufficient); 0.56 mgkg⁻¹ and 0.175 mgkg⁻¹ respectively in Tanala (deficient); 2.335 mgkg⁻¹ and 0.645 mgkg⁻¹ respectively in Aegra (sufficient); and 4.0233 mgkg⁻¹ and 1.11333 mgkg⁻¹ respectively in Samdeo (sufficient) in Patiya;

2.825 mgkg⁻¹ and 0.781 mgkg⁻¹ respectively in Bhatgaon (sufficient); 2.2 mgkg⁻¹ and 0.61 mgkg⁻¹ respectively in Kotyura (sufficient); and of 4.7125 mgkg⁻¹ and 1.285 mgkg⁻¹ respectively in Kasoon (sufficient). The STFR Meter recommended the 4 kgac⁻¹ CuSO₄ for the deficient soils of Tanala in Patiya.

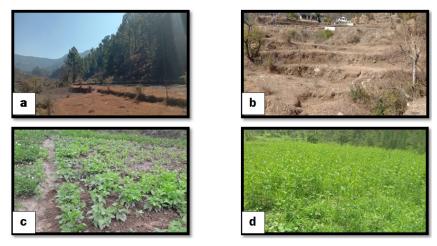


Fig. 10: Photographs showing the enhancement in the crop productivity in two of the villages after the interventionssuggested in the present studies were employed. Fallow lands in Kasoon(a) and Bhatgaon (b)Village, respectively. High turn out of cropsin Kasoon (c) and Bhatgaon (d)Village, respectively

Nutrient Index

To examine fertility of the region and nutrient supplying capacity of these soils to plants, Nutrient Index (NI) was calculated.

For calculation, in the case of primary nutrients, samples of high and very high categories have been placed in "High" class of nutrient status. Following the same methodology, in case of S and micronutrients, "Deficient" samples have been placed in "Low" and "Sufficient" samples have been placed in "Medium" class of nutrient status.

The nutrient indices and the categories are tabulated in Table 4.

The soils of Patiya show low N, P, K, and Fe fertility, and medium S, Zn, B, Mn, and Cu fertility. Bhatgaon soil has low NI and fertility of N, P, K, Zn, B, and Fe, and medium NI and fertility of S, Mn, and Cu.

The soil of Kotyura has low N, K, Zn, and B fertility, medium S, Fe, Mn, and Cu fertility, and high P fertility,

whereas the soil of Kasoon has low N, P, K, Zn, B fertility, and medium S, Fe, Mn, and Cu fertility.

On average, the study area shows the medium category of NI values for S, Mn, and Cu in all the locations, indicating sufficient fertility of these nutrients for plant growth.

Fertility status as revealed by Nutrient Index is very significant in selecting the bio fertilizers as the region is applying traditional organic manure.¹⁶ Bio fertilizers are comprised of living microbial cells and promote plant growth by increasing nutrient availability and acquisition¹⁷ and play an important role in functioning of ecosystem by facilitating many biogeochemical cycles and organic matter degradation.¹⁸ Sustainable agriculture which has a long-term effect on soil fertility of this region can be achieved by the application of bio fertilizers.^{19,20,21}

Conclusion

The overall fertility status of the soil of the region is low of N, P, K, Zn, B, and Fe; and medium of S, Mn, and Cu. These are indicative of a requirement for additional farm yard manure (FYM) and fertilizers to make them suitable for the cultivation of crops. Since the agricultural system in the region is largely organic, the use of bio-fertilizers such as Nitrogen and Phosphorus bio-fertilizer is recommended.

Further, high yield indigenous cash crops suited for the region along with their ecological and nutrient requirements were studied in detail from various digital platforms²²⁻³³ run by the government and non-government agencies, and the outcome was categorically tabulated in Table 5. The tabulated data displays that the lands of Patiya such as Samdeo-Nigad and Samdeo are more suited for fruit trees such as Pear, Guava, Mango, Litchi, etc., and Bhatgaon and Kotyura are more suited for pulses such as Horse gram, Black gram, Lentil, etc. It also reveals that Soyabean and Black Soyabean is well suited to the type of soil and irrigation facilities available in the study region. Hence, it was recommended to sow Yellow Soyabean in Patiya and Kasoon; Black Soyabean (Kala Bhat) in Kotyura; and Pigeon Pea (Arhar) in Bhatgaon for the current season (June-July 2020). Table 6 presents the manure, nutrient, and fertilizer requirements of these Kharif crops to be used as a reference to maximize the use and production from these fallow lands and enhance the agricultural activities in the region, and provide better livelihood options. Based on the above outcome four self-help groups were created and villagers with identified lands were motivated for deep plowing of the land with handheld scooter tractor and crops of beans and peas were selected for sowing of seeds with line-makers to maintain essential distance between them. This resulted in an encouraging yield convincing farmers that crop can have a substantial impact on their income which led to an enthusiasm in all villages to adapt cooperative farming as per the suggestions utilizing (Figure 10)

Acknowledgements

The authors are thankful to NMHS (under Ministry of Environment, Forest and CC) for funding the project (GBPNI/NMHS-2019-20/MG59-01/07. 02e1 dated 02/07/2019) under which the present research work was carried out. We are immensely grateful to the residents of Patiya and surrounding villages for providing access to their lands for conducting the study. We would also like to show our gratitude to the field attendants and support staff for their assistance.

Funding

GRANT No.: GBPNI/NMHS-2019-20/MG59-01/07.02e1 dated 02/07/2019, National Mission on Himalayan Studies (NMHS) [Ministry of Environment, Forest and Climate Change.

Conflict of Interest

The authors do not have any conflict of interest.

References

- Mhalla, B., Ahmed, N., Datta, S., Singh, M., Shrivastava, M., Mahapatra, S, Moursy, A. Role of Topography on Characteristics, Fertility Status and Classification of the Soils of Almora District in Uttarakhand. *Journal of the Indian Society of Soil Science*. 2019;67:309-320 10.5958/0974-0228.2019.00034.3
- Surya, J.N., Walia, C.S., Ahmad, N., Singh, H., Goyal, V., Khajuria, V. Characterization and clay minerals composition of soils derived from metamorphic formation of Kumaon Himalayas. *Clay Research*.2015;34(1):15-24
- Brady, N.C., Weil, R.R.The Nature and Properties of Soils, 13th Ed. Prentice- Hall Inc., New Jersey, USA. 2002
- 4 Yurembum, G.S., Chandra, H., Kumar, V.

Status of Available Macro and Micronutrients in the soils of Someshwar Watershed in Almora District of Uttarakhand. *The Ecoscan.* 2015;9:725-730

- Maurya, B., Singh, Vimal, Dhyani, P., Kashyap, S. Impact of Altitudes on Soil Characteristics and Enzymatic Activities in Forest and Fallow Lands of Almora District of Central Himalaya. Octa Journal of Environmental Research. 2014;2:1-9
- NRCCA. Basic Concepts of Plant Nutrition. NRCCA Study Resources- Cornell University. 2010; Retrieved from https://nrcca.cals. cornell.edu/soilFertilityCA/CA1/CA1_print. html

7. Athokpam, H., Wani, H. S., Kamei, D.,

Athokpam, S. H., Nongmaithem, J., Kumar, D., Singh, Y. K., Naorem, B. S., Devi, T. R, Devi, L. 2013. Soil macro-and micronutrient status of Senapati district, Manipur (India). *African J. Agricultural Research*. 2013;8(39):4932-4936

- Subash, T., Vincent, P., Karuppasamy, S., Kushnappa, K. Analysis of Nutrient Index of Soil for Green Environment. *Asian Journal of Chemistry.* 2020;29: 2311-2315
- 9. Doran, J.W. and T.B. Parkin. 1994. Defining and Assessing Soil Quality. *Soil Sci. Soc. Amer. Madison, Wisconsin.* 1994;1-21
- Nigam, G., Pandey, V.K., Tripathi, M. P., Sinha, J. Assessment of macro and micronutrients of soil in a small agricultural watershed. *International Journal of ChemTech Research*. 2014; 6:3658-3664
- Parker, F. W., Nelson, W. L., Winter, E., Miller, I. E. The broad interpretation of soil test information. *Agronomy Journal*. 1951;43:105-112
- Singh, G., Sharma, M., Manan, J., Singh, G. Assessment of soil fertility status under different cropping sequences in District Kapurthala. J Krishi vigyan. 2016;5(1):1-9 http://dx.doi.org/10.5958/2349-4433.2016.00023.4
- EnviStats India.Soil Nutrient Indices. EnviStats India 2019, Volume – II Environment Accounts, Ministry of Statistics and Programme Implementation. New Delhi. Retrieved from http://www.mospi.gov.in/ sites/default/files/reports_and_publication/ statistical_publication/EnviStats/b14_ Chapter%202.pdf
- Thien, S. J. A flow texture by feel analysis. *Journal of Agronomic Education*. 1979; 8:54-55
- WS Telematics. PUSA STFR Meter: User Manual, Delhi diagram for teaching. WS Telematics Pvt. Ltd.2018
- Sneha, S., Anitha, B., Anjum Sahair R., Raghu N., GopenathT.S., Chandrashekrappa G.K., Kanthesh M Basalingappa. Biofertilizer for crop production and soil fertility. *Academia Journal of Agricultural Research*. 2018;6:299-306
- Riaz, U., Mehdi, S. M., Iqbal, S., Khalid, H. I., Qadir, A. A., Anum, W., *et al.* Ahmad, M., Murtaza, G.Bio-fertilizers: eco-friendly

approach for plant and soil environment, In: Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation, eds K. R. Hakeem, R. A. Bhat, and H. Qadri (Cham: Springer). 2020;188– 214. doi: 10.1007/978-3-030-35691-0_8

- Paul, E. A. Soil Microbiology, Ecology and Biochemistry. London: Elsevier. 2015. doi: 10.1016/C2011-0-05497-2
- Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., and Dhiba, D. (2018). Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. *Frontiers in Microbiology*. 2018; 9:1606. doi: 10.3389/fmicb.2018; 01606
- Singh, M., Singh, D., Gupta, A., Pandey, K. D., Singh, P. K., and Kumar, A. Plant growth promoting rhizobacteria, In PGPR Amelioration in Sustainable Agriculture, eds A. K. Singh, A. Kumar, and P. K. Singh (Cambridge, MA: Elsevier). 2019; 41–66. doi: 10.1016/B978-0-12-815879-1.00003-3
- 21. Mitter, E. K., Tosi, M., Obregón, D, Dunfield, K. E., Germida, J. J. Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. *Frontiers in Sustainable Food System*.2021; 5:606815. doi: 10.3389/fsufs.2021;606815
- Agropedia. 2009. Nutrient management in Litchi. Agropedia. Retrieved fromhttp:// agropedia.iitk.ac.in/content/nutrientmanagement-litchi#:~:text=1%2F3%20 dose%20of%20nitrogen,main%20trunk%20 of%20the%20tree
- 23. TNAU. 2015. Fertilizer Schedule for Fruit Crops. TNAU AgritechPortal. Retrived from http://agritech.tnau.ac.in/horticulture/ FERTILIZER%20SCHEDULE%20FOR%20 FRUIT%20CROPS.pdf
- 24. TNAU. 2016. Nutrient Management: Sesame. TNAU Agritech Portal. Retrieved from http://agritech.tnau.ac.in/agriculture/agri_ nutrientmgt_sesame.html
- 25. Directorate of Millets Development. Department of Agriculture, Co-operation & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Government of India. 2016 Retrieved from http://millets.dacfw.nic.in/
- 26. National Horticulture Board. 2019. Guava-Manuring & Fertilization. National Horticulture Board, Ministry of Agriculture and Farmers

Welfare, Government of India. http://nhb.gov. in/pdf/fruits/guava/gua006.pdf

- 27. Vikaspedia. 2020. Vikaspedia, India Development Gateway (In DG) initiative, Centre for Development of Advanced Computing (C-DAC)https://vikaspedia.in/ InDG
- 28. ApniKheti. Digital platform for farmers and agri industry.https://www.apnikheti.com/
- 29. IndiaAgroNet.Com. https://www.indiaagronet. com/

- 30. Kisan Suvidha. https://www.kisansuvidha. com/
- 31. Krishi Vigyan Kendra Almora. http://almora. kvk4.in/district-profile.html
- 32. Krishi Vigyan Kendra Imphal. Tips for Lentil Cultivation. Krishi Vigyan Kendra, Imphal West, ICAR Research Complex for NEH Region https://kvk.icar.gov.in/API/Content/ Ppupload/k0196 58.pdf
- 33. Horse gram farming information guide.https:// www.agrifarming.in/horse-gram-farming/