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Abstract
Carbon sequestration in the terrestrial ecosystems by forest and agricultural 
management activities is being considered the best sustainable method 
to diminish the increasing concentration of atmospheric carbon dioxide 
(CO2). This paper presents soil carbon sequestration potential of terrestrial 
ecosystem and the concept of soil priming effect. According to forest survey 
of India, the carbon stock of Indian forests increased at the rate of 0.3%  
as compared to the previous assessment, i.e., from 2017 to 2019. Indian 
forests soils are a reservoir of 7124.6 million tonnes of carbon and they still 
have high potential to store more carbon. As per soil carbon 4 mille concepts,  
India must intensify the process of afforestation, land restoration,  
and agricultural management practices to increase the soil carbon storage, 
i.e., up to 0.4%. However, organic manure amendments or a fresh supply 
of carbon substrates via. rhizodeposits into the rainfed or irrigated lands 
changes the microbial communities and may decompose the already  
stored soil carbon, i.e., positive priming effect. Thus, accurate measurement 
of soil organic carbon (SOC) content in various types of ecosystems like 
forest, agricultural land, desert, agroforest, and plantation is still crucial  
to ascertain how much they can help to reduce the increasing  
concentration of atmospheric CO2.
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Introduction
The concentration levels of carbon dioxide (CO2) 
in the atmosphere plays a precarious role in 

maintaining the global surface temperature.1,2  
The level of atmospheric CO2 concentration  
is increased at alarming rate after the industrial 
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revolution across the world. As compared to the 
pre-industrial level (280 ppm), the current CO2 

concentration is about ~414 ppm.3 A lot of studies 
have reported that the increase in concentrations of 
atmospheric CO2 is due to anthropogenic activities 
especially fossil fuel burning, deforestation, and 
agricultural management practices.4-7 The global 
surface temperature has increased by around 1.1°C 
in 2017 since 1850, i.e. above the preindustrial level, 
and it’s expected to increase at 0.2°C per decade.8 
The escalation in the earth’s surface temperature 
affects the terrestrial ecosystem processes, 
ecosystem services and disturbs the terrestrial 
ecosystem carbon fluxes.9 It’s essential to ascertain 
suitable scientific techniques or natural processes 
for alleviating atmospheric concentrations of CO2  
in the terrestrial ecosystem. The United Nations 
climate entity is United Nations Framework 
Convention on Climate Change (UNFCC) and 
several countries (both developed and developing) 
are its members and they have agreed to tackle 
the problem of global climate change by reducing 
the CO2 emissions from industrial activities. 
The Kyoto Protocol, consented by industrialized 
and unindustrialized countries in the year 1997, 
specified that the well-developed industrialized 
nations required to cut their CO2 emissions  from 
industrial and other activities with reference to 
the 1990 level.10 Kyoto protocol, article 3.3 and 
3.4, mentions that the industrialised nations  
(mostly developed) are required to cut some 
s ign i f icant  amount  o f  carbon emiss ions  
by reforestation and afforestation programs and 
invest clean energy projects in the developing 
countries to curb CO2 emissions through clean 
development mechanism activit ies.10,11 The 
Copenhagen and Durban climate accords are not 
successful especially to decide on a officially binding 
agreement to reduce the major greenhouse gases 
emissions by member countries. However, they 
agreed to focus on reduction of emissions from 
deforestation and forest degradation (REDD+).12 
Major features of REDD+ are to reduce CO2 
emissions from forests that suffer loss of vegetation 
cover and forest degradation activities and to 
increase sequestration potential of forests across the 
globe resulting in effective carbon sink.12 According 
to Paris climate accords (2015), all the member 
states of UNFCC agreed to make policies needed 
for sustainable future. Also, the agreement made 
a framework for controlling global warming well 

below 1.5°C by the end of this century.8 Carbon 
sequestration in terrestrial ecosystems, by plantation 
activities, is considered as the best approach to 
absorb significant amount of atmospheric carbon and 
also to reduce land degradation. There is a scarcity  
of data on the impacts of afforestation and plantation 
activities on carbon sink and sequestration potential 
across the world.13,14 Besides an earlier study15 
showed the importance of agricultural management 
practices especially no tillage, organic manure 
amendments and nitrogen fertilization on organic 
carbon storage in soils. There have been several 
studies reported that the fresh carbon substrates 
(via photosynthates) accelerate the already stored 
carbon i.e. called priming effect. An attempt has 
been made in this review to presents soil carbon 
sequestration potential of terrestrial ecosystem and 
the significance of soil priming effect.

Global and Indian Forest Cover 
On a global scale, forests comprise of about 4.06 
billion hectares i.e. 30.8% of the complete land 
area.16 More than 50% of the global forests are 
situated in United States of America (USA), Canada, 
the Russian Federation, Brazil etc.17 The total 
forest cover of India is 24.56% of the geographical 
area which also includes the tree outside forest 
cover (2.89%) of the country.18 According to an 
earlier study, out of 328.7 million hectares of 
the total geographical area of India, 161.8, 57, 
68.35, 11.05, and 7.95 million hectares are of 
arable land, irrigated land, forest land, permanent 
pasture, and permanent croplands respectively.19 
Hence, increasing agricultural activities through 
deforestation in temperate, tropical, arid and 
semiarid regions have a more profound effect 
on terrestrial ecosystem carbon flux. Hence an 
earlier study7 estimated the net carbon flux due to  
land use and land cover change for the period  
1850-2015 was 145±16 Pg C and more from 
the tropical regions (102±5.8 Pg C) of the world.  
Indian forests (the Western Ghats and Himalayan 
forests) are considered as one of the major 
biodiversity hotspots of the world. Therefore,  
Indian forest ecosystems plays a crucial role in 
regulating carbon cycle at regional and global level. 

Carbon Storage in the Terrestrial Forest 
Ecosystems
In the earth’s terrestrial ecosystems, forest 
ecosystems occupy a significant part and play 
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a central role in the terrestrial carbon cycle.14  
Forest ecosystems, around the world, stored 
higher amounts of organic carbon in above and 
below-ground parts with longer residence times 
especially in the soil via the carbon sequestration 
process.20 Globally, forest ecosystems absorb  
a lot of atmospheric CO2 through the process of 
photosynthesis. The forest ecosystem releases an 
almost equal amount of CO2 into the atmosphere 
via the respiration process.20 However, a significant 
amount of carbon is stored in forests vegetation 
biomass, dead twigs, leaves, detritus matters, and 
soil.20 Therefore, forest ecosystems are considered 
an important carbon sink of terrestrial ecosystems. 
World forest ecosystems occupy about 4.06 billion 
hectares and act as a reservoir of carbon.17,21 
Research studies22,23 reported that tropical, 
temperate and boreal forests sequestered about 
55-63%, 26-31% and 11-14% of the total carbon 
stock of the world’s forests respectively (Figure 1). 
Tropical forests occupy about 1.76 million hectares 
and are considered as nature’s green engines of 
our planet earth.24 The soils of tropical forests stored 
three folds more carbon as compared to the above 
ground vegetation biomass. Thus tropical forests 
store 471±93 PgC (Pg = petagram) and they can 
store up to 120-194 Mg ha-1 of carbon.14,24 Tropical 
forests are very dynamic in terms of plant growth, 
mineralization, and litter decomposition because 
of their unique climatic conditions.25,26 It has been 
reported that deforestation and forest degradation 
in tropics to release about 0.5 to 3.5 Pg C yr-1.27-29  
Also it has been reported that tropical trees 
accomplish 60% of the world photosynthesis 
and release almost similar amount via litter 
decomposition by microbes.27 An earlier study30 
reported that the age of soil carbon, in tropical forests 
and grasslands, increases (7 to 1250 years) with 
an depth increases. For example, 45% of topsoil 
carbon (0-30cm) comes under the age of 50 years. 
Therefore, small changes in the carbon stocks in the 
tropical forests may alter the earth's carbon cycling. 
Furthermore, tropical forests are more fragile, due to 
the climatic conditions, and they respond so rapidly, 
if they are under environmental stress conditions, 
to the global carbon cycle.28 Global forests and 
soils together stored about 1240 PgC.21 Soils are 
considered as a potential reservoir of carbon in the 
terrestrial ecosystem of our planet earth. Global soils 
are considered as a major sink or source of CO2 with 

the subject to conventional and/or different types of 
agricultural management activities.14

Fig. 1: Terrestrial carbon stock of major forests 
in the world (Pan et al., 201123)

In the year 2009, the total carbon stocks of Indian 
forests, trees and soils was estimated to be about 
6621 million tonnes.18 The recent FSI report (2019) 
states that Indian forests stored about 7124.6 million 
tonnes carbon. Among different forest types in India, 
tropical dry deciduous forests stored the maximum 
amount of carbon (2158 million tonnes carbon) 
followed by other types of forests.18 Tropical dry 
deciduous forests occupies about 40% of total forest 
cover in India.18 Moreover tropical dry deciduous 
forest soils can act as a major sink for carbon for 
longer time periods31,32 (Figure 2).

Fig. 2: Carbon stock (%) in different types of 
Indian forests (FSI, 2019).

According to FAO,29 decreasing forest areas due to 
anthropogenic activities in the recent decade come 
down because of policies and actions taken by 
many of the developed and developing countries. 
Especially, afforestation or plantation activities 
may play a greater role in ecosystem restoration 
and increasing forest cover. According to the 4 per 
mille concept, every nation should increase their 
total soil carbon storage capacity by 0.4% per year 
to compensate the global emission of greenhouse 
gases.33 The forest and tree cover of the country 
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had increased about 0.65% (5,188 sq km) during 
the FSI assessment period from 2017 to 2019.18,34 
Besides, Indian forests stored about 7124.6 million 
tons of carbon in five different components viz., 
biomass lying above and below the ground, debris, 
vegetation litter and soil.18 Among them, soil stored 
56.19% (4003.6 million tons) of carbon.18 Also they 
found an increase in carbon stock (21.3 million tons)  
from 2017 to 2019. Thus accurate measurement 
of carbon stock in five different components, 
temporality, in different forest ecosystem is also 
very important.
  
Soil Organic Carbon (SOC) Pools
The CENTURY-C and ROTH-C carbon models 
are effectively applied to understand the changes 
of SOC pools in agricultural and forest soils.35,36  
The ROTH-C and CENTURY-C model has different 
organic carbon pools based on their turnover time. 
For example, the CENTURY-C model has three 
different pools viz., active, slow and passive.35 
Whereas the ROTH-C model has five different pools 

viz., Decomposable Plant Material (DPM), Resistant 
Plant Material (RPM), Microbial Biomass (BIO) and 
Humified Organic Matter (HUM) and Inert Organic 
Matter (IOM).37 Above mentioned pools are not 
directly quantifiable, instead they are conceptual 
pools. Thus several researchers have tried to 
fractionate different soil organic matter pools based 
on particle size (sand, silt and clay fractions) and 
chemical (labile or mineral associated/recalcitrant).38 
Understanding the changes of soil organic carbon 
pools in terrestrial ecosystem becomes imperative to 
develop new sustainable or management practices 
to store more carbon in the soils. Table 1 shows 
the SOC content in different particles and chemical 
fractions. A combination of physical and chemical 
fractionation method is most effective in separation 
of organic carbon fractions with different turnover 
rates from soils.39 However, still there is no discrete 
method or technique available to separate the 
organic carbon fractions with different turnover rates 
in all types of soils. 

Table 1: Fractions of soil organic carbon content in different land use and cover types

No	 Name of fractions	 SOC 	 Reference
 
1.	 Particle size fractions	 SOC (%)	 40
	 Tropical forest in Costa Rica, 	 <20µm        :34.7%
	 Gallery Secondary forest	 20-53 µm    :23.2%
		  53-105 µm  :23.8%
	 15-year-old Secondary forest	 105-200 µm :18.3%
		  <20µm        :29.2%
		  20-53 µm    :26.0%
		  53-105 µm :24.4%
		  105-200 µm :20.4%
	 25-year-old Secondary forest  	 <20µm        :30.5%
		  20-53 µm    :25.7%
		  53-105 µm :23.8%
		  105-200 µm :19.9%
	 Abandoned plantation 	 <20µm        :34%
	 (>60 years old)	 20-53 µm    :27.1%
		  53-105 µm :21.6%
		  105-200 µm :17.2%
2.	 Different vegetation covers	 0-20cm	 41
	 in north eastern china	 TSOC
		  2.1-66.6 g kg-1

		  20-40cm
		  0.8-46.1 g kg-1

		  0-20cm
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	 Heavy fractions	 1.8-65 g kg-1

		  20-40cm
		  0.7-45.8 g kg-1

	 Resistant fractions	 0-20cm
		  0.7-54.4g kg-1

		  20-40cm    
 		  0.3-37.3 g kg-1

3.	 Chemical fractionation	 Mardi watershed, Nepal	 42
	 Fulvic acid 	 Forest                   :01.36 kg Cm-2

		  Grass land            :01.59 kg Cm-2

		  Agricultural land :0.80 kg Cm-2

	 Humic acid	 Forest                   :01.82 kg Cm-2

		  Grass land            :01.45 kg Cm-2

		  Agricultural land :0.57 kg Cm-2

	 Humin	 Forest                   :02.25 kg Cm-2

		  Grass land            :01.72 kg Cm-2

		  Agricultural land :01.44 kg Cm-2

	 Total SOC	 Forest                   :06.13 kg Cm-2

		  Grass land            :05.03 kg Cm-2

		  Agricultural land :02.84 kg Cm-2

4.	 Physical fractionation	 0-15 cm	 43
	 Particulate organic matter >53 -	 Sandy loam
	  250 µm (POM/TOC)	 Monocropping :39.8%	
		  Agroforestry    :26.5%
		  Sandy clay loam 
		  Mono-cropping: 17.9%
		  Agroforestry     : 25.2%
5.	 Physical fractionation	 Agramunt site   ( 0-40 cm)	 44
	 POM 	 No tillage                   :17.9Mg ha-1

		  Reduced tillage         :13.8Mg ha-1

	  	 Sub-soil tillage           : 14.0Mg ha-1

		  Conventional tillage   : 15.4Mg ha-1

		  Selvanera site
		  No tillage                   :11.5Mg ha-1

		  Reduced tillage         :12.5Mg ha-1

		  Sub-soil tillage           : 14.9Mg ha-1

		  Conventional tillage   : 17.0Mg ha-1

		  Penaflor in continuous barley cropping system
		  No tillage                   :08.2Mg ha-1

		  Reduced tillage         :06.0Mg ha-1

		  Conventional tillage   :05.7Mg ha-1
		  Agramunt site
		  No tillage                   :28.8Mg ha-1

	 Mineral associated carbon	 Reduced tillage         :32.4Mg ha-1

	 (<53 µm)	 Sub-soil tillage           :30.0Mg ha-1

		  Conventional tillage   :31.2Mg ha-1

		  Selvanera site
		  No tillage                   :44.5Mg ha-1

		  Reduced tillage          :48.6Mg ha-1

		  Sub-soil tillage           :48.4Mg ha-1

		  Conventional tillage   :46.2Mg ha-1
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Priming Effect (PE) 
The change in the rate of decomposition of already 
stored organic carbon (loss of carbon) when you 
supply the fresh carbon substrates into the soils 
is termed as priming effect.47-49 It is categorized as 
real priming effect (loss of carbon) and apparent 
priming effect (extra CO2 production by microbial 
populations).50 Globally, several studies have 
reported that freshly added carbon substrate 
accelerates the priming effect (loss of native carbon) 
through rejuvenation of microbial populations and 
their biomass turnover.47-50 Besides, the freshly 
added carbon substrates (rhizodeposits or fine roots) 
control the alterations in the growth of microbial 
populations and in turn affect the real priming 
effect or no effect on already stored carbon in the 
soils.51-55 These alterations in the decomposition of 
stored carbon depend on the nutrient composition 
and /or budget of the particular soil.51,56 An earlier 
study48 hypothesized that r-strategists types of 

microbes dominate till the easily utilizable substrates 
(like glucose) are exhausted in the soil system. 
After that, the gradual change from r-strategists 
to the k-strategists group of microbes dominate 
to decompose the resistant carbon in the soils. 
Thus there is a competition between the fast-
growing microbes i.e. r-strategists (utilize the easily 
decomposable substrate like glucose etc.) and 
k-strategists for utilization of the substrates in the 
soil.56

The easily utilizable substrates are exhausted in the 
soil then the r-strategists become dormant and the 
k-strategists dominate in the system to decompose 
the insoluble organic compounds available in the 
soil organic matter.50 The real priming effect would 
not occur even after the addition of easily utilizable 
substrates into the soil, because r-strategists may 
dominate in the system but they are unable to utilize 
the native soil organic matter. Thus an earlier study50 

		  Penaflor in continuous barley cropping
		  system
		  No tillage                   :42.2Mg ha-1

		  Reduced tillage          :42.1Mg ha-1

		  Conventional tillage   :41.8Mg ha-1

6	 Density fractionation	 0-20 cm	 45
		  Conventional tillage :42.2 g kg-1

	 Light fraction	 No tillage                  :44.1g kg-1

		  Forest     (oak forest) :86.9 g kg-1

		  Conventional tillage :7.9 g kg-1

	 Heavy fraction	 No tillage                  :9.8 g kg-1

		  Forest     (oak forest) :20.4 g kg-1

7	 Particle size fractionation	 Arable land top-soil  :1750 mgC kg-1	 46
	 Coarse-silt (63-20µm)	 Arable land sub-soil  :530 mgC kg-1

		  Grassland top-soil     :1700  mgC kg-1

		  Grassland sub-soil     :430 mgC kg-1

		  Woodland top-soil     :8900 mgC kg-1

		  Woodland sub-soil     :8470 mgC kg-1

	 Medium-silt (20-6.3 µm)	 Arable land top-soil  :6400 mgC kg-1

		  Arable land sub-soil  :1060 mgC kg-1

		  Grassland top-soil     :9770  mgC kg-1

		  Grassland sub-soil     :730 mgC kg-1

		  Woodland top-soil     :28870 mgC kg-1

		  Woodland sub-soil     :19270 mgC kg-1

	 Fine-silt (6.3-2 µm)	 Arable land top-soil  :4850 mgC kg-1

		  Arable land sub-soil  : 1800 mgC kg-1

		  Grassland sub-soil     :1610 mgC kg-1

		  Woodland top-soil     :14970 mgC kg-1

		  Woodland sub-soil     :10440 mgC kg-1
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suggested that such priming effect may be “apparent” 
which is due to accelerated microbial biomass rather 
than by decomposition of already stored and /or build 
in soil organic matter. The acceleration of organic 
matter decomposition is totally dependent upon the 
living (microbes) and dead organic components.  
The microbial biomass acts as one of the important 
soil organic matter pools besides carbon and 
nitrogen in the terrestrial soil ecosystem.57 A small 
change in the quantity and/or turnover rate of various 
soil organic pools, especially labile and recalcitrant, 
may have a greater impact on the total carbon 
budget of regional to global scale level.

Conclusion
Understanding the carbon sequestration potential 
of natural forests, abandoned lands, grasslands, 
agricultural lands, and plantations is very crucial 
to store the atmospheric carbon in the terrestrial 
ecosystem. The selection of native plant species 
for the plantation activities, in any region, is 
essential in order to maintain the sustainable 
ecosystem process. It is a challenge to assess 
the soil-carbon sink and carbon sequestration 
potential strategy of afforestation activities of any 
region in the world. A multidisciplinary approach  
(climatologists, ecologists, geologists, etc.)  
is required to understand the mechanisms of  

soil-carbon sink relationship and sequestration 
potential of any terrestrial ecosystem. An accurate 
estimation of carbon stock and monitoring the 
factors that affect the storage of carbon in forests 
and plantation soils are more important while 
assessing the total carbon stock of any ecosystem. 
It is essential to understand the changes of already 
stored organic matter pools in different types of forest 
ecosystems and plantations. Thus, more research 
analysis is warranted to comprehend the positive or 
negative priming effect of already stored carbon in 
terrestrial ecosystems.
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